Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices

Nat Mater. 2008 Feb;7(2):125-9. doi: 10.1038/nmat2098. Epub 2008 Jan 13.


Conversion of charge current into pure spin current and vice versa in non-magnetic semiconductors or metals, which are called the direct and inverse spin Hall effects (SHEs), provide a new functionality of materials for future spin-electronic architectures. Thus, the realization of a large SHE in a device with a simple and practical geometry is a crucial issue for its applications. Here, we present a multi-terminal device with a Au Hall cross and an FePt perpendicular spin injector to detect giant direct and inverse SHEs at room temperature. Perpendicularly magnetized FePt injects or detects perpendicularly polarized spin current without magnetic field, enabling the unambiguous identification of SHEs. The unprecedentedly large spin Hall resistance of up to 2.9 mOmega is attributed to the large spin Hall angle in Au through the skew scattering mechanism and the highly efficient spin injection due to the well-matched spin resistances of the chosen materials.