Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice

J Physiol. 2008 Mar 15;586(6):1731-41. doi: 10.1113/jphysiol.2007.143685. Epub 2008 Jan 17.

Abstract

The activation of the AMP-activated protein kinase (AMPK) and inhibition of the mammalian target of rapamycin complex 1 (mTORC1) is hypothesized to underlie the fact that muscle growth following resistance exercise is decreased by concurrent endurance exercise. To directly test this hypothesis, the capacity for muscle growth was determined in mice lacking the primary upstream kinase for AMPK in skeletal muscle, LKB1. Following either 1 or 4 weeks of overload, there was no difference in muscle growth between the wild type (wt) and LKB1(-/-) mice (1 week: wt, 38.8 +/- 7.75%; LKB1(-/-), 27.8 +/- 12.98%; 4 week: wt, 75.8 +/- 15.2%; LKB1(-/-), 85.0 +/- 22.6%). In spite of the fact that the LKB1 had been knocked out in skeletal muscle, the phosphorylation and activity of the alpha1 isoform of AMPK were markedly increased in both the wt and the LKB1(-/-) mice. To identify the upstream kinase(s) responsible, we studied potential upstream kinases other than LKB1. The activity of both Ca(2+)-calmodulin-dependent protein kinase kinase alpha (CaMKKalpha) (5.05 +/- 0.86-fold) and CaMKKbeta (10.1 +/- 2.59-fold) increased in the overloaded muscles, and this correlated with their increased expression. Phosphorylation of TAK-1 also increased 10-fold following overload in both the wt and LKB1 mice. Even though the alpha1 isoform of AMPK was activated by overload, there were no increases in expression of mitochondrial proteins or GLUT4, indicating that the alpha1 isoform is not involved in these metabolic adaptations. The phosphorylation of TSC2, an upstream regulator of the TORC1 pathway, at the AMPK site (Ser1345) was increased in response to overload, and this was not affected by LKB1 deficiency. Taken together, these data suggest that the alpha1 isoform of AMPK is preferentially activated in skeletal muscle following overload in the absence of metabolic adaptations, suggesting that this isoform might be important in the regulation of growth but not metabolism.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • AMP-Activated Protein Kinase Kinases
  • AMP-Activated Protein Kinases
  • Animals
  • Hypertrophy / pathology
  • Hypertrophy / physiopathology
  • Mice
  • Mice, Knockout
  • Muscle Fatigue / physiology*
  • Muscle, Skeletal / cytology
  • Muscle, Skeletal / physiology*
  • Phosphorylation
  • Physical Endurance / physiology*
  • Protein Kinases / metabolism*
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*

Substances

  • Protein Kinases
  • Protein Serine-Threonine Kinases
  • Stk11 protein, mouse
  • AMP-Activated Protein Kinase Kinases
  • AMP-Activated Protein Kinases