Patterns of convergence in rat zona incerta from the trigeminal nuclear complex: light and electron microscopic study

J Comp Neurol. 2008 Apr 1;507(4):1521-41. doi: 10.1002/cne.21624.


In contrast to the restricted receptive field (RF) properties of the ventral posteromedial nucleus (VPM), neurons of the ventral thalamus zona incerta (ZI) have been shown to exhibit multiwhisker responses that vary from the ventral (ZIv) to the dorsal (ZId) subdivision. Differences in activity may arise from the trigeminal nuclear complex (TNC) and result from subnucleus specific inputs via certain cells of origin, axon distribution patterns, fiber densities, bouton sizes, or postsynaptic contact sites. We tested this hypothesis by assessing circuit relationships among TNC, ZI, and VPM. Results from tracer studies show that, 1) relative to ZId, the trigeminal projection to ZIv is denser and arises predominantly from the principalis (PrV) and interpolaris (SpVi) subdivisions; 2) the incertal projection from TNC subnuclei overlaps and covers most of ZIv; 3) two sets of PrV axons terminate in ZI: a major subtype, possessing bouton-like swellings, and a few fine fibers, with minimal specialization; 4) both PrV and SpVi terminals exhibit asymmetric endings and preferentially target dendrites of ZI neurons; 5) small and large neurons in PrV are labeled after retrograde injections into ZI; 6) small PrV cells with incertal projections form a population that is distinct from those projecting to VPM; and 7) approximately 30-50% of large cells in PrV send collaterals to ZI and VPM. These findings suggest that, 1) although information to ZI and VPM is essentially routed along separate TNC circuits, streams of somatosensory code converge in ZI to establish large RFs, and 2) subregional differences in ZI response profiles are attributable in part to TNC innervation density.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Female
  • Microscopy, Electron, Transmission
  • Neural Pathways / ultrastructure*
  • Presynaptic Terminals / ultrastructure*
  • Rats
  • Rats, Long-Evans
  • Subthalamus / ultrastructure*
  • Trigeminal Nuclei / ultrastructure*
  • Vibrissae / innervation