Early technology assessment of new medical devices

Int J Technol Assess Health Care. Winter 2008;24(1):36-44. doi: 10.1017/S0266462307080051.

Abstract

Objectives: In the United States, medical devices represent an eighty-billion dollar a year market. The U.S. Food and Drug Administration rejects a significant number of applications of devices that reach the investigational stage. The prospects of improving patient condition, as well as firms' profits, are thus substantial, but fraught with uncertainties at the time when investments and design decisions are made. This study presents a quantitative model focused on the risk aspects of early technology assessment, designed to support the decisions of medical device firms in the investment and development stages.

Methods: The model is based on the engineering risk analysis method involving systems analysis and probability. It assumes use of all evidence available (both direct and indirect) and integrates the information through a linear formula of aggregation of probability distributions. The model is illustrated by a schematic version of the case of the AtrialShaper, a device for the reduction of stroke risk that is currently in the preprototype stage.

Results: The results of the modeling provide a more complete description of the evidence base available to support early-stage decisions, thus allowing comparison of alternative designs and management alternatives.

Conclusions: The model presented here provides early-stage decision-support to industry, but also benefits regulators and payers in their later assessment of new devices and associated procedures.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Commerce
  • Decision Making, Organizational*
  • Equipment and Supplies*
  • Models, Organizational
  • Technology Assessment, Biomedical / methods*
  • United States