Evidence that Xenon does not produce open channel blockade of the NMDA receptor

J Neurophysiol. 2008 Apr;99(4):1983-7. doi: 10.1152/jn.00631.2007. Epub 2008 Jan 30.

Abstract

Previous studies had not excluded the possibility that the mechanism by which Xenon (Xe) blocks N-methyl-D-aspartate (NMDA) receptors might be that of an open-channel blocker. We tested this possibility on mutant NMDA receptors carrying an alanine (A) to cysteine (C) mutation located within the SYTANLAAF-motif of the third transmembrane region (TM3). This mutation was shown to yield constitutively open ion channels after modification with a thiol-modifying reagent. We expressed such mutant channels in Neuro2A cells and recorded glutamate (50 microM)-induced currents in the whole cell recording mode. Although Xe (3.5 mM) blocked the currents through the wild-type receptor NR1-1a/NR2A and NR1-1a/NR2B by approximately 40% and those through the mutant receptors NR1-1a/NR2A(A650C) or NR1-1a/NR2B(A651C) by approximately 30%, it was unable to block the currents through the methane thiosulfonate etyhlammonium-modified mutant receptors. On the other hand, established open-channel blockers of the NMDA receptor such as MK-801 (1 microM) or Mg ions (Mg(2+); 1 mM) were able to block these permanently open channels. These results suggest that Xe does not act as a classical open-channel blocker at the NMDA receptor.

MeSH terms

  • Amino Acid Substitution
  • Anesthetics, Inhalation / pharmacology*
  • Cell Line, Tumor
  • Dizocilpine Maleate / pharmacology
  • Excitatory Amino Acid Antagonists*
  • Humans
  • Mutation / physiology
  • Patch-Clamp Techniques
  • Receptors, N-Methyl-D-Aspartate / antagonists & inhibitors*
  • Receptors, N-Methyl-D-Aspartate / drug effects
  • Receptors, N-Methyl-D-Aspartate / genetics
  • Receptors, N-Methyl-D-Aspartate / physiology
  • Transfection
  • Xenon / pharmacology*

Substances

  • Anesthetics, Inhalation
  • Excitatory Amino Acid Antagonists
  • NR1 NMDA receptor
  • NR2A NMDA receptor
  • NR2B NMDA receptor
  • Receptors, N-Methyl-D-Aspartate
  • Xenon
  • Dizocilpine Maleate