A tissue-based approach to in vitro drug screening allows for determination of the cumulative positive and negative effects of a drug at the tissue rather than the cellular or subcellular level. Skeletal muscle myoblasts were tissue-engineered into three-dimensional muscle with parallel myofibers generating directed forces. When grown attached to two flexible micro-posts (mu posts) acting as artificial tendons in a 96-well plate format, the miniature bioartificial muscles (mBAMs) generated tetanic (active) forces upon electrical stimulation measured with a novel image-based motion detection system. mBAM myofiber hypertrophy and active force increased in response to insulin-like growth factor 1. In contrast, mBAM deterioration and weakness was observed with a cholesterol-lowering statin. The results described in this study demonstrate the integration of tissue engineering and biomechanical testing into a single platform for the screening of compounds affecting muscle strength.