Maximum likelihood reconstruction for emission tomography

IEEE Trans Med Imaging. 1982;1(2):113-22. doi: 10.1109/TMI.1982.4307558.

Abstract

Previous models for emission tomography (ET) do not distinguish the physics of ET from that of transmission tomography. We give a more accurate general mathematical model for ET where an unknown emission density lambda = lambda(x, y, z) generates, and is to be reconstructed from, the number of counts n(*)(d) in each of D detector units d. Within the model, we give an algorithm for determining an estimate lambdainsertion mark of lambda which maximizes the probability p(n(*)|lambda) of observing the actual detector count data n(*) over all possible densities lambda. Let independent Poisson variables n(b) with unknown means lambda(b), b = 1, ..., B represent the number of unobserved emissions in each of B boxes (pixels) partitioning an object containing an emitter. Suppose each emission in box b is detected in detector unit d with probability p(b, d), d = 1, ..., D with p(b,d) a one-step transition matrix, assumed known. We observe the total number n(*) = n(*)(d) of emissions in each detector unit d and want to estimate the unknown lambda = lambda(b), b = 1, ..., B. For each lambda, the observed data n(*) has probability or likelihood p(n(*)|lambda). The EM algorithm of mathematical statistics starts with an initial estimate lambda(0) and gives the following simple iterative procedure for obtaining a new estimate lambdainsertion mark(new), from an old estimate lambdainsertion mark(old), to obtain lambdainsertion mark(k), k = 1, 2, ..., lambdainsertion mark(new)(b)= lambdainsertion mark(old)(b)Sum of (n(*)p(b,d) from d=1 to D/Sum of lambdainsertion mark()old(b('))p(b('),d) from b(')=1 to B), b=1,...B.