Tumor endothelial cell tube formation model for determining anti-angiogenic activity of a tRNA synthetase cytokine

Methods. 2008 Feb;44(2):190-5. doi: 10.1016/j.ymeth.2007.10.004.


In addition to their key role in protein biosynthesis, aminoacyl-tRNA synthetases have other biological functions that appeared during their long evolutionary development. In mammalian cells, specific members of this family of enzymes are also procytokines that, upon conversion, are active cytokines in pathways for angiogenesis, and thereby connect translation to control of blood vessel development. Here we describe an in vitro assay for tube formation by tumor endothelial cells on a matrigel substrate. In contrast to normal endothelial cells, tumor endothelial cells have strong angiogenic capabilities and the ability to form vessel-like tubes on a solid substrate. In particular, we found that a SV40-immortalized mouse lymphoid endothelial cell line was robust in this assay and yielded data that could be quantified with high precision. Consequently, this specific tube formation model provides an opportunity to discover and analyze potent agents that specifically affect angiogenesis. It has proven effective for studying the angiogenic functions of tRNA synthetase cytokines.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiogenesis Inhibitors / pharmacology*
  • Animals
  • Cell Line, Tumor
  • Cytokines / pharmacology*
  • Endothelium, Vascular / cytology*
  • Humans
  • Mice
  • Microscopy, Confocal
  • Microscopy, Fluorescence
  • Peptide Fragments / pharmacology*
  • Tryptophan-tRNA Ligase / pharmacology*


  • Angiogenesis Inhibitors
  • Cytokines
  • Peptide Fragments
  • Tryptophan-tRNA Ligase