Physiogenomic comparison of human fat loss in response to diets restrictive of carbohydrate or fat

Nutr Metab (Lond). 2008 Feb 6;5:4. doi: 10.1186/1743-7075-5-4.


Background: Genetic factors that predict responses to diet may ultimately be used to individualize dietary recommendations. We used physiogenomics to explore associations among polymorphisms in candidate genes and changes in relative body fat (Delta%BF) to low fat and low carbohydrate diets.

Methods: We assessed Delta%BF using dual energy X-ray absorptiometry (DXA) in 93 healthy adults who consumed a low carbohydrate diet (carbohydrate ~12% total energy) (LC diet) and in 70, a low fat diet (fat ~25% total energy) (LF diet). Fifty-three single nucleotide polymorphisms (SNPs) selected from 28 candidate genes involved in food intake, energy homeostasis, and adipocyte regulation were ranked according to probability of association with the change in %BF using multiple linear regression.

Results: Dieting reduced %BF by 3.0 +/- 2.6% (absolute units) for LC and 1.9 +/- 1.6% for LF (p < 0.01). SNPs in nine genes were significantly associated with Delta%BF, with four significant after correction for multiple statistical testing: rs322695 near the retinoic acid receptor beta (RARB) (p < 0.005), rs2838549 in the hepatic phosphofructokinase (PFKL), and rs3100722 in the histamine N-methyl transferase (HNMT) genes (both p < 0.041) due to LF; and the rs5950584 SNP in the angiotensin receptor Type II (AGTR2) gene due to LC (p < 0.021).

Conclusion: Fat loss under LC and LF diet regimes appears to have distinct mechanisms, with PFKL and HNMT and RARB involved in fat restriction; and AGTR2 involved in carbohydrate restriction. These discoveries could provide clues to important physiologic mechanisms underlying the Delta%BF to low carbohydrate and low fat diets.