Bayesian learning of visual chunks by human observers
- PMID: 18268353
- PMCID: PMC2268207
- DOI: 10.1073/pnas.0708424105
Bayesian learning of visual chunks by human observers
Abstract
Efficient and versatile processing of any hierarchically structured information requires a learning mechanism that combines lower-level features into higher-level chunks. We investigated this chunking mechanism in humans with a visual pattern-learning paradigm. We developed an ideal learner based on Bayesian model comparison that extracts and stores only those chunks of information that are minimally sufficient to encode a set of visual scenes. Our ideal Bayesian chunk learner not only reproduced the results of a large set of previous empirical findings in the domain of human pattern learning but also made a key prediction that we confirmed experimentally. In accordance with Bayesian learning but contrary to associative learning, human performance was well above chance when pair-wise statistics in the exemplars contained no relevant information. Thus, humans extract chunks from complex visual patterns by generating accurate yet economical representations and not by encoding the full correlational structure of the input.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Similar articles
-
The role of Gestalt grouping principles in visual statistical learning.Atten Percept Psychophys. 2011 Apr;73(3):708-13. doi: 10.3758/s13414-010-0084-4. Atten Percept Psychophys. 2011. PMID: 21264742
-
Low-frequency neural activity reflects rule-based chunking during speech listening.Elife. 2020 Apr 20;9:e55613. doi: 10.7554/eLife.55613. Elife. 2020. PMID: 32310082 Free PMC article.
-
TRACX2: a connectionist autoencoder using graded chunks to model infant visual statistical learning.Philos Trans R Soc Lond B Biol Sci. 2017 Jan 5;372(1711):20160057. doi: 10.1098/rstb.2016.0057. Philos Trans R Soc Lond B Biol Sci. 2017. PMID: 27872375 Free PMC article.
-
Topology and graph theory applied to cortical anatomy may help explain working memory capacity for three or four simultaneous items.Brain Res Bull. 2003 Apr 15;60(1-2):25-42. doi: 10.1016/s0361-9230(03)00030-3. Brain Res Bull. 2003. PMID: 12725890 Review.
-
The basal ganglia and chunking of action repertoires.Neurobiol Learn Mem. 1998 Jul-Sep;70(1-2):119-36. doi: 10.1006/nlme.1998.3843. Neurobiol Learn Mem. 1998. PMID: 9753592 Review.
Cited by
-
Tracking human skill learning with a hierarchical Bayesian sequence model.PLoS Comput Biol. 2022 Nov 30;18(11):e1009866. doi: 10.1371/journal.pcbi.1009866. eCollection 2022 Nov. PLoS Comput Biol. 2022. PMID: 36449550 Free PMC article.
-
Face and word composite effects are similarly affected by priming of local and global processing.Atten Percept Psychophys. 2021 Jul;83(5):2189-2204. doi: 10.3758/s13414-021-02287-0. Epub 2021 Mar 26. Atten Percept Psychophys. 2021. PMID: 33772446
-
The neural basis of visual object learning.Trends Cogn Sci. 2010 Jan;14(1):22-30. doi: 10.1016/j.tics.2009.11.002. Epub 2009 Nov 27. Trends Cogn Sci. 2010. PMID: 19945336 Free PMC article. Review.
-
Neural circuit mechanisms of hierarchical sequence learning tested on large-scale recording data.PLoS Comput Biol. 2022 Jun 21;18(6):e1010214. doi: 10.1371/journal.pcbi.1010214. eCollection 2022 Jun. PLoS Comput Biol. 2022. PMID: 35727828 Free PMC article.
-
Encoding of complexity, shape, and curvature by macaque infero-temporal neurons.Front Syst Neurosci. 2011 Jul 4;5:51. doi: 10.3389/fnsys.2011.00051. eCollection 2011. Front Syst Neurosci. 2011. PMID: 21772816 Free PMC article.
References
-
- Harris ZS. Structural Linguistics. Chicago: Univ of Chicago Press; 1951.
-
- Peissig JJ, Tarr MJ. Visual object recognition: do we know more now than we did 20 years ago? Annu Rev Psychol. 2007;58:75–96. - PubMed
-
- Chomsky N, Halle M. The Sound Pattern of English. Cambridge, MA: MIT Press; 1968.
-
- Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2:1019–1025. - PubMed
-
- Ullman S, Vidal-Naquet M, Sali E. Visual features of intermediate complexity and their use in classification. Nat Neurosci. 2002;5:682–687. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
