CuI complexes with N,N',S,S' scorpionate ligands: evidence for dimer-monomer equilibria

Inorg Chem. 2008 Mar 17;47(6):2223-32. doi: 10.1021/ic702108x. Epub 2008 Feb 12.

Abstract

The heteroscorpionate N, N', S, S' donor ligands 4-methoxy-3,5-dimethyl-2-(3-(methylthio)-1-(3-(2-(methylthio)phenyl)-1H-pyrazol-1-yl)propyl)pyridine (L(a)) and 4-methoxy-3,5-dimethyl-2-(2-(methylthio)-1-(3-(2-(methylthio)phenyl)-1H-pyrazol-1-yl)ethyl)pyridine (L(b)) were prepared. The Cu(I) complexes [Cu(L(a))]2(BF4)2 (a2(BF4)2) and [Cu(L(b))]2(BF4)2 (b2(BF4)2) were synthesized and characterized by X-ray crystallography. Both compounds exhibit a dinuclear structure, presenting each Cu(I) center in a distorted N, N', S, S' tetrahedral environment. On the basis of nuclear magnetic resonance (NMR) and ESI-mass data, the presence of a mononuclear complex in equilibrium with the dimer was hypothesized for both complexes. The dimerization constants of the processes, 2a(+) = a2(2+) and 2b(+) = b2(2+) , were obtained by (1)H NMR dilution experiments (fast-exchange regime) in CD 3CN: log K(a2(2+)) = 3.55(6) and log K(b2(2+)) = 3.23(5) at 300 K. Thermodynamic parameters were determined by a van't Hoff analysis (280-310 K temperature range): DeltaH(0)(a2(2+)) = -12(1) kJ mol (-1), DeltaH(0)(b2(2+)) = -10(1) kJ mol(-1), DeltaS(0)(a2(2+)) = +27(4) kJ mol (-1), and DeltaS(0)(b2(2+)) = +28(4) kJ mol (-1). Pulsed gradient spin-echo (PGSE) NMR experiments provided the weighted-average hydrodynamic volume (VH) of the species present in CD 3CN solution at different copper concentrations (CCu). Nonlinear interpolation of VH as a function of C Cu for a dimer-monomer equilibrium led to the hydrodynamic volumes of both monomers (VH(0)(M)) and dimers (VH(0)(D)): VH(0)(a(+)) = 620(40) A(3), VH(0)(b(+)) = 550(10) A(3), VH(0)(a2(2+)) = 950(20) A(3), and VH(0)(b2(2+)) = 900(10) A(3). Cyclic voltammetry experiments performed in CH3CN and CH2Cl2 showed a quasi-reversible to irreversible behavior of the Cu(I)/Cu(II) redox couple for both complexes.