Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties

Stem Cells Dev. 2008 Feb;17(1):173-84. doi: 10.1089/scd.2007.0133.


The concept of cancer stem cells suggests that there are malignant stem-like cells within a tumor that are responsible for tumor renewal and resistance to cytotoxic therapies. Studies have identified glioma stem-like cells that extrude Hoechst 33342 dye, representing a double-negative "side population" (SP) thought to be selectively resistant to drug therapy. A CD133+ stem cell-like subpopulation has been isolated from a human glioma that was enriched for tumor-initiating cells. It is unknown whether CD133+ cells with similar phenotype persist in established glioma cell lines, or if CD133 is a marker of glioma stem-like cells in rodents. We investigated whether CD133+ and SP cells existed in the GL261 cell line, a syngeneic mouse glioma model that is widely used for preclinical and translational research. Intracerebral injection of less than 100 CD133+ GL261 cells formed tumors, whereas it required 10,000 CD133(-) cells to initiate a tumor. CD133+ GL261 cells expressed nestin, formed tumor spheres with high frequency, and differentiated into glial and neuronal-like cells. Similar to GL261, seven human glioma cell lines analyzed also contained a rare CD133+ population. Surprisingly, we found that CD133+ GL261 cells did not reside in the SP, nor did the majority ( approximately 94%) of CD133+ human glioma cells. These results demonstrate that the expression of CD133 in murine glioma cells is associated with enhanced tumorigenicity and a stem-like phenotype. This study also reveals a previously unrecognized level of heterogeneity in glioma cell lines, exposing several populations of cells that have characteristics of cancer stem cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • AC133 Antigen
  • Animals
  • Antigens, CD*
  • Cell Differentiation
  • Cell Line, Tumor
  • Glioma / pathology*
  • Glycoproteins*
  • Humans
  • Mice
  • Neoplasm Transplantation
  • Neoplastic Stem Cells / pathology*
  • Neuroglia
  • Neurons
  • Peptides*


  • AC133 Antigen
  • Antigens, CD
  • Glycoproteins
  • PROM1 protein, human
  • Peptides
  • Prom1 protein, mouse