Geometry of rear seats and child restraints compared to child anthropometry

Stapp Car Crash J. 2007 Oct;51:275-98.


The objective of this study was to evaluate the geometry of a wide range of restraints (child restraints, booster seats and rear seats) used by children, and how these match their anthropometry, and to determine limitations to restraint size for the population of children using them. The study is motivated by the widespread premature graduation from one restraint type to another, which parents often attribute to children outgrowing their previous restraint. Currently, recommended transitions are based on a small sample of vehicles and children. Outboard rear seat and seat belt geometry (anchorage locations, sash belt angles) from 50 current model vehicles were measured using a custom-developed measuring jig. For 17 child restraints, a 3-dimensional measuring arm was used to measure the geometry of the restraint including interior size and strap slot locations (where relevant). These measurements were compared to anthropometric measurements, to determine the suitability of a given restraint for children of particular ages. The results for the rear seat geometry indicate that all seat cushions were too deep for a child whose upper leg length is at the 50th percentile until approximately 11.5 years, and half of vehicle seat cushions were too deep for a 15 year old child whose upper leg length is at the 50th percentile. Sash belt geometry was more variable, with approximately a third of vehicles accommodating 6-8 year olds who approximate the shoulder geometry measurements at the 50th percentile. Dedicated child restraints accommodated most children within recommended age groups, with two exceptions. Several high back booster seats were not tall enough for a child whose seated height is at the 50th percentile for 8 year olds (who is still too short for an adult belt according to current guidelines and the results from the rear seat geometry study), and a small number of forward facing restraints and high back boosters were too narrow for children at the upper end of the recommended age ranges. Analysis of the results from this study indicates that alterations in restraint geometry, particularly shortening the seat cushion, allowing for adjustable upper sash belt anchorages in the rear seat of vehicles, and increasing the height of high back booster seats would substantially improve the fit of restraints for child occupants. This data confirms findings from a recent study that looked only at rear seat cushion depths and provides new data on seat belt and child restraint geometry for child occupants.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Age Factors
  • Anthropometry*
  • Automobiles*
  • Child
  • Child, Preschool
  • Equipment Design
  • Ergonomics / statistics & numerical data*
  • Female
  • Humans
  • Male
  • Seat Belts / adverse effects
  • Seat Belts / statistics & numerical data*