Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs

BMC Bioinformatics. 2008 Feb 18;9:101. doi: 10.1186/1471-2105-9-101.


Background: As one of the most common protein post-translational modifications, glycosylation is involved in a variety of important biological processes. Computational identification of glycosylation sites in protein sequences becomes increasingly important in the post-genomic era. A new encoding scheme was employed to improve the prediction of mucin-type O-glycosylation sites in mammalian proteins.

Results: A new protein bioinformatics tool, CKSAAP_OGlySite, was developed to predict mucin-type O-glycosylation serine/threonine (S/T) sites in mammalian proteins. Using the composition of k-spaced amino acid pairs (CKSAAP) based encoding scheme, the proposed method was trained and tested in a new and stringent O-glycosylation dataset with the assistance of Support Vector Machine (SVM). When the ratio of O-glycosylation to non-glycosylation sites in training datasets was set as 1:1, 10-fold cross-validation tests showed that the proposed method yielded a high accuracy of 83.1% and 81.4% in predicting O-glycosylated S and T sites, respectively. Based on the same datasets, CKSAAP_OGlySite resulted in a higher accuracy than the conventional binary encoding based method (about +5.0%). When trained and tested in 1:5 datasets, the CKSAAP encoding showed a more significant improvement than the binary encoding. We also merged the training datasets of S and T sites and integrated the prediction of S and T sites into one single predictor (i.e. S+T predictor). Either in 1:1 or 1:5 datasets, the performance of this S+T predictor was always slightly better than those predictors where S and T sites were independently predicted, suggesting that the molecular recognition of O-glycosylated S/T sites seems to be similar and the increase of the S+T predictor's accuracy may be a result of expanded training datasets. Moreover, CKSAAP_OGlySite was also shown to have better performance when benchmarked against two existing predictors.

Conclusion: Because of CKSAAP encoding's ability of reflecting characteristics of the sequences surrounding mucin-type O-glycosylation sites, CKSAAP_ OGlySite has been proved more powerful than the conventional binary encoding based method. This suggests that it can be used as a competitive mucin-type O-glycosylation site predictor to the biological community. CKSAAP_OGlySite is now available at

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Amino Acid Sequence
  • Animals
  • Artificial Intelligence
  • Binding Sites
  • Glycosylation*
  • Humans
  • Mammals
  • Molecular Sequence Data
  • Mucins / chemistry*
  • Pattern Recognition, Automated
  • Protein Binding
  • Protein Interaction Mapping / methods*
  • Proteins / chemistry*
  • Sequence Analysis, Protein / methods*


  • Mucins
  • Proteins