Recent rodent models of antidepressant response implicate a novel set of genes in mechanisms of antidepressant action. The authors examined variants in four such genes (KCNK2 (TREK1), SLC18A2 (VMAT2), S100A10, and HDAC5) for association with remission in a large effectiveness trial of antidepressant treatments. Subjects were drawn from the Sequenced Treatment Alternatives to Relieve Depression (STAR(*)D) study, a multicenter, prospective, effectiveness trial in major depressive disorder (MDD). Outpatients with nonpsychotic MDD were initially treated with citalopram for up to 14 weeks; those who did not remit with citalopram were sequentially randomized to a series of next-step treatments, each for up to 12 weeks. Single-nucleotide polymorphisms in four genes were examined for association with remission, defined as a clinician-rated Quick Inventory of Depressive Symptomatology (QIDS-C(16)) score < or =5. Of 1554 participants for whom DNA was available, 565 (36%) reached remission with citalopram treatment. No association with any of the four genes was identified. However, among the 751 who entered next-step treatment, variants in KCNK2 were associated with treatment response (Bonferroni-corrected, gene-based empirical p<0.001). In follow-up analyses, KCNK2 was also associated with effects of similar magnitude for third-step treatment among those with unsatisfactory benefit to both citalopram and one next-step pharmacotherapy (n=225). These findings indicate that genetic variation in KCNK2 may identify individuals at risk for treatment resistance. More broadly, they indicate the utility of animal models in identifying genes for pharmacogenetic studies of antidepressant response.