Testing congruence in phylogenomic analysis
- PMID: 18288620
- DOI: 10.1080/10635150801910436
Testing congruence in phylogenomic analysis
Abstract
Phylogenomic analyses of large sets of genes or proteins have the potential to revolutionize our understanding of the tree of life. However, problems arise because estimated phylogenies from individual loci often differ because of different histories, systematic bias, or stochastic error. We have developed Concaterpillar, a hierarchical clustering method based on likelihood-ratio testing that identifies congruent loci for phylogenomic analysis. Concaterpillar also includes a test for shared relative evolutionary rates between genes indicating whether they should be analyzed separately or by concatenation. In simulation studies, the performance of this method is excellent when a multiple comparison correction is applied. We analyzed a phylogenomic data set of 60 translational protein sequences from the major supergroups of eukaryotes and identified three congruent subsets of proteins. Analysis of the largest set indicates improved congruence relative to the full data set and produced a phylogeny with stronger support for five eukaryote supergroups including the Opisthokonts, the Plantae, the stramenopiles + Apicomplexa (chromalveolates), the Amoebozoa, and the Excavata. In contrast, the phylogeny of the second largest set indicates a close relationship between stramenopiles and red algae, to the exclusion of alveolates, suggesting gene transfer from the red algal secondary symbiont to the ancestral stramenopile host nucleus during the origin of their chloroplast. Investigating phylogenomic data sets for conflicting signals has the potential to both improve phylogenetic accuracy and inform our understanding of genome evolution.
Similar articles
-
Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.Mol Biol Evol. 2006 Mar;23(3):663-74. doi: 10.1093/molbev/msj075. Epub 2005 Dec 15. Mol Biol Evol. 2006. PMID: 16357039
-
Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates.Mol Biol Evol. 2007 Aug;24(8):1702-13. doi: 10.1093/molbev/msm089. Epub 2007 May 7. Mol Biol Evol. 2007. PMID: 17488740
-
From phylogenetics to phylogenomics: the evolutionary relationships of insect endosymbiotic gamma-Proteobacteria as a test case.Syst Biol. 2007 Feb;56(1):1-16. doi: 10.1080/10635150601109759. Syst Biol. 2007. PMID: 17366133
-
Untangling the phylogeny of amoeboid protists.J Eukaryot Microbiol. 2009 Jan-Feb;56(1):16-25. doi: 10.1111/j.1550-7408.2008.00379.x. J Eukaryot Microbiol. 2009. PMID: 19335771 Review.
-
Horizontal gene transfer between microbial eukaryotes.Methods Mol Biol. 2009;532:473-87. doi: 10.1007/978-1-60327-853-9_27. Methods Mol Biol. 2009. PMID: 19271202 Review.
Cited by
-
Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses?BMC Genomics. 2009 Oct 20;10:484. doi: 10.1186/1471-2164-10-484. BMC Genomics. 2009. PMID: 19843329 Free PMC article.
-
A novel taxonomic marker that discriminates between morphologically complex actinomycetes.Open Biol. 2013 Oct 23;3(10):130073. doi: 10.1098/rsob.130073. Open Biol. 2013. PMID: 24153003 Free PMC article.
-
Assessing parallel gene histories in viral genomes.BMC Evol Biol. 2016 Feb 5;16:32. doi: 10.1186/s12862-016-0605-4. BMC Evol Biol. 2016. PMID: 26847371 Free PMC article.
-
Genomic perspectives on the birth and spread of plastids.Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10147-53. doi: 10.1073/pnas.1421374112. Epub 2015 Apr 20. Proc Natl Acad Sci U S A. 2015. PMID: 25902528 Free PMC article.
-
Molecular phylogenetics: principles and practice.Nat Rev Genet. 2012 Mar 28;13(5):303-14. doi: 10.1038/nrg3186. Nat Rev Genet. 2012. PMID: 22456349 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
