Evolutionary cytogenetics in salamanders

Chromosome Res. 2008;16(1):183-201. doi: 10.1007/s10577-007-1205-3.

Abstract

Salamanders (Amphibia: Caudata/Urodela) have been the subject of numerous cytogenetic studies, and data on karyotypes and genome sizes are available for most groups. Salamanders show a more-or-less distinct dichotomy between families with large chromosome numbers and interspecific variation in chromosome number, relative size, and shape (i.e. position of the centromere), and those that exhibit very little variation in these karyological features. This dichotomy is the basis of a major model of karyotype evolution in salamanders involving a kind of 'karyotypic orthoselection'. Salamanders are also characterized by extremely large genomes (in terms of absolute mass of nuclear DNA) and extensive variation in genome size (and overall size of the chromosomes), which transcends variation in chromosome number and shape. The biological significance and evolution of chromosome number and shape within the karyotype is not yet understood, but genome size variation has been found to have strong phenotypic, biogeographic, and phylogenetic correlates that reveal information about the biological significance of this cytogenetic variable. Urodeles also present the advantage of only 10 families and less than 600 species, which facilitates the analysis of patterns within the entire order. The purpose of this review is to present a summary of what is currently known about overall patterns of variation in karyology and genome size in salamanders. These patterns are discussed within an evolutionary context.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Chromosomes / genetics*
  • Cytogenetics*
  • Evolution, Molecular*
  • Phylogeny
  • Urodela / genetics*