Reproductive diapause and life-history clines in North American populations of Drosophila melanogaster
- PMID: 18298646
- DOI: 10.1111/j.1558-5646.2008.00351.x
Reproductive diapause and life-history clines in North American populations of Drosophila melanogaster
Abstract
Latitudinal clines are widespread in Drosophila melanogaster, and many have been interpreted as adaptive responses to climatic variation. However, the selective mechanisms generating many such patterns remain unresolved, and there is relatively little information regarding how basic life-history components such as fecundity, life span and mortality rates vary across environmental gradients. Here, it is shown that four life-history traits vary predictably with geographic origin of populations sampled along the latitudinal gradient in the eastern United States. Although such patterns are indicative of selection, they cannot distinguish between the direct action of selection on the traits in question or indirect selection by means of underlying genetic correlations. When independent suites of traits covary with geography, it is therefore critical to separate the widespread effects of population source from variation specifically for the traits under investigation. One trait that is associated with variation in life histories and also varies with latitude is the propensity to express reproductive diapause; diapause expression has been hypothesized as a mechanism by which D. melanogaster adults overwinter, and as such may be subject to strong selection in temperate habitats. In this study, recently derived isofemale lines were used to assess the relative contributions of population source and diapause genotype in generating the observed variance for life histories. It is shown that although life span, fecundity and mortality rates varied predictably with geography, diapause genotype explained the majority of the variance for these traits in the sampled populations. Both heat and cold shock resistance were also observed to vary predictably with latitude for the sampled populations. Cold shock tolerance varied between diapause genotypes and the magnitude of this difference varied with geography, whereas heat shock tolerance was affected solely by geographic origin of the populations. These data suggest that a subset of life-history parameters is significantly influenced by the genetic variance for diapause expression in natural populations, and that the observed variance for longevity and fecundity profiles may reflect indirect action of selection on diapause and other correlated traits.
Similar articles
-
Geographic variation in diapause incidence, life-history traits, and climatic adaptation in Drosophila melanogaster.Evolution. 2005 Aug;59(8):1721-32. Evolution. 2005. PMID: 16331839
-
Environmental heterogeneity and the maintenance of genetic variation for reproductive diapause in Drosophila melanogaster.Evolution. 2006 Aug;60(8):1602-11. Evolution. 2006. PMID: 17017061
-
Genetic variance for diapause expression and associated life histories in Drosophila melanogaster.Evolution. 2005 Dec;59(12):2616-25. Evolution. 2005. PMID: 16526509
-
Comparative analysis of morphological traits among Drosophila melanogaster and D. simulans: genetic variability, clines and phenotypic plasticity.Genetica. 2004 Mar;120(1-3):165-79. doi: 10.1023/b:gene.0000017639.62427.8b. Genetica. 2004. PMID: 15088656 Review.
-
The role of fecundity and reproductive effort in defining life-history strategies of North American freshwater mussels.Biol Rev Camb Philos Soc. 2013 Aug;88(3):745-66. doi: 10.1111/brv.12028. Epub 2013 Feb 28. Biol Rev Camb Philos Soc. 2013. PMID: 23445204 Review.
Cited by
-
Histone methylation regulates reproductive diapause in Drosophila melanogaster.PLoS Genet. 2023 Sep 13;19(9):e1010906. doi: 10.1371/journal.pgen.1010906. eCollection 2023 Sep. PLoS Genet. 2023. PMID: 37703303 Free PMC article.
-
Integration of photoperiodic and temperature cues by the circadian clock to regulate insect seasonal adaptations.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Aug 16. doi: 10.1007/s00359-023-01667-1. Online ahead of print. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023. PMID: 37584703 Review.
-
Seasonal changes in photoperiod and temperature lead to changes in cuticular hydrocarbon profiles and affect mating success in Drosophila suzukii.Sci Rep. 2023 Apr 6;13(1):5649. doi: 10.1038/s41598-023-32652-y. Sci Rep. 2023. PMID: 37024537 Free PMC article.
-
Spatial and temporal variation in abundance of introduced African fig fly (Zaprionus indianus) (Diptera: Drosophilidae) in the eastern United States.bioRxiv [Preprint]. 2023 Mar 25:2023.03.24.534156. doi: 10.1101/2023.03.24.534156. bioRxiv. 2023. PMID: 36993771 Free PMC article. Updated. Preprint.
-
Natural alleles of the clock gene timeless differentially affect life-history traits in Drosophila.Front Physiol. 2023 Jan 10;13:1092951. doi: 10.3389/fphys.2022.1092951. eCollection 2022. Front Physiol. 2023. PMID: 36703932 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases