Surface Reconstruction for free-space 360 degrees fluorescence molecular tomography and the effects of animal motion

IEEE Trans Med Imaging. 2008 Feb;27(2):188-94. doi: 10.1109/TMI.2007.904662.


Complete projection (360 degrees ) free-space fluorescence tomography of opaque media is poised to enable 3-D imaging through entire small animals in vivo with improved depth resolution compared to 360 degrees -projection fiber-based systems or limited-view angle systems. This approach can lead to a new generation of Fluorescence Molecular Tomography (FMT) performance since it allows high spatial sampling of photon fields propagating through tissue at any projection, employing nonconstricted animal surfaces. Herein, we employ a volume carving method to capture 3-D surfaces of diffusive objects and register the captured surface in the geometry of an FMT 360 degrees -projection acquisition system to obtain 3-D fluorescence image reconstructions. Using experimental measurements we evaluate the accuracy of the surface capture procedure by reconstructing the surfaces of phantoms of known dimensions. We then employ this methodology to characterize the animal movement of anaesthetized animals. We find that the effects of animal movement on the FMT reconstructed image were within system resolution limits (approximately 0.07 cm).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Animals
  • Artificial Intelligence*
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Microscopy, Fluorescence / instrumentation
  • Microscopy, Fluorescence / methods*
  • Molecular Probe Techniques*
  • Movement*
  • Pattern Recognition, Automated / methods
  • Phantoms, Imaging
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Tomography, Optical / instrumentation
  • Tomography, Optical / methods*