HLA class II-restricted antigen (Ag) processing and presentation are important for the activation of CD4+ T cells, which are the central orchestrating cells of immune responses. The majority of melanoma cells either expresses, or can be induced to express, HLA class II proteins. Thus, they are prime targets for immune mediated elimination by class II-restricted CD4+ T cells. We have previously shown that human melanoma cells lack an important enzyme, gamma interferon-inducible lysosomal thiol-reductase (GILT), capable of perturbing immune recognition of these tumors. Here, we show that GILT expression in human melanoma cells enhances Ag processing and presentation via HLA class II molecules. We also show that GILT expression influences the generation of active forms of cysteinyl proteases, cathepsins B, L and S, as well as an aspartyl protease cathepsin D in melanoma cells. Mechanistic studies revealed that GILT does not regulate acidic cathepsins at the transcriptional level; rather it colocalizes with the cathepsins and influences HLA class II Ag processing. GILT expression in melanoma cells also elevated HLA-DM molecules, which favor epitope loading onto class II in the endolysosomal compartments, enhancing CD4+ T cell recognition. These data suggest that GILT-expressing melanoma cells could prove to be very promising for direct antigen presentation and CD4+ T cell recognition, and may have direct implications for the design of cancer vaccines.