Frequency-derived distributed optical-fiber sensing technique: theory and characterization

Appl Opt. 2000 Jun 20;39(18):3032-43. doi: 10.1364/ao.39.003032.


Frequency-derived distributed optical-fiber sensing is a method for remote measurement of the spatial distribution of linear birefringence in an optical fiber, allowing a corresponding measurement of those external measurands that influence this birefringence. The method employs a pump-probe scheme, which, by use of the optical Kerr effect, generates an optical modulation of the probe beam, with a modulation frequency whose temporal variation maps the spatial distribution of birefringence. We provide a complete theoretical analysis of this method by using Jones calculus and graphic representation on the Poincaré sphere. The relevant characterization of the technique and some experimental results are also presented; these show good agreement with the theory.