Loss of activation-induced CD45RO with maintenance of CD45RA expression during prolonged culture of T cells and NK cells

Immunology. 1991 Sep;74(1):78-85.


The results of the present study show that activation-induced changes in CD45RA and CD45RO expression on T cells and natural killer (NK) cells are not unidirectional for all cells during a 5-week culture period. T cells and NK cells were generated from a resting subpopulation of peripheral blood mononuclear cells (PBMC) defined by sedimentation at Percoll high buoyant densities (p greater than 1.0640 g/ml) and unresponsiveness to IL-2. T cells were activated by a combination of PHA, sheep erythrocytes and IL-2-conditioned medium (IL-2-CM), and NK cells were activated by co-culture with gamma-irradiated malignant melanoma (MM-170) cells and IL-2-CM. Both T-cell and NK-cell cultures were maintained by subculture in IL-2-CM. NK cells and the CD45R(Abright)RO(dim/neg) subpopulation of T cells gained CD45RO following activation and this was accompanied by a two-fold decrease in CD45RA expression. In different cultures, CD45RO expression was not stable on 28-80% of T cells and 10-55% of NK cells. Cells with decreased CD45RO expression showed increased expression of CD45RA. Instability of CD45RO expression on cultured T cells and NK cells occurred at a time following the period of rapid cell growth when the cells were entering a quiescent phase. Both the CD4+ and CD8+ T-cell subpopulation showed similar changes in CD45 isoform expression. In contrast to the results obtained with the CD45R(Abright)RO(dim/neg) resting T cells, the CD45RO(bright)RA(dim/neg) subpopulation of resting T cells when activated and cultured under identical conditions retained CD45RO expression and remained CD45RAdim/neg. Thus a significant proportion of resting CD45R(Abright)RO(dim/neg) T cells is not related in a differentiation sequence to resting CD45RObrightRAdim/neg T cells, and therefore resting CD45RAbrightROdim/neg T cells and resting NK cells may be heterogeneous with respect to their activation history.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antigens, CD / analysis*
  • Cells, Cultured
  • Histocompatibility Antigens / analysis*
  • Humans
  • Killer Cells, Natural / immunology*
  • Leukocyte Common Antigens
  • Lymphocyte Activation
  • T-Lymphocytes / immunology*
  • Time Factors


  • Antigens, CD
  • Histocompatibility Antigens
  • Leukocyte Common Antigens