Synthesis, structure, and optical properties of the quaternary seleno-gallates NaLnGa4Se8 (Ln = La, Ce, Nd) and their comparison with the isostructural thio-gallates

Inorg Chem. 2008 May 5;47(9):3603-9. doi: 10.1021/ic701986j. Epub 2008 Mar 15.

Abstract

Three new quaternary seleno-gallates containing rare-earth metals and sodium cations, have been synthesized by a solid-state route in evacuated quartz ampoules: Na LnGa 4Se 8 ( Ln = La( I), Ce ( II) and Nd ( III)). The synthesis involved the stoichiometric combination of sodium polyselenides, rare-earth metal, Ga 2Se 3, and Se or elemental Ga in place of Ga 2Se 3. Single-crystal structure analysis indicated that the compounds are isostructural to the thio-analogue, NaNdGa 4S 8. The structures of I- III are described in terms of layers of GaSe 4 tetrahedra joined by corner- and edge-sharing; the alkali-metal cations and the trivalent rare-earth metal cations occupy square antiprismatic sites between the layers. The optical properties of the compounds have been investigated and compared with the isostructural thio-gallate. The band gap of I was located around 2.65 eV. The band gaps of II and III were 2.66 and 2.73 eV, respectively, considerably narrower than their thio-analogues ( approximately 3.4 eV). The contraction of the band gap was attributed to the shift of the valence band to higher energy due to the involvement of higher energy (4p) Se orbitals. The 4f --> 5d gap of II is found to be located around 2.32 eV, which is 0.26 eV narrower than the thio-analogue is due to a greater dispersion of the Ln-(5d) band caused by more covalent Ce-Se bonds as well as rising of the f level energy.