Heteronuclear and homonuclear high-spin alkali trimers on helium nanodroplets

Phys Rev Lett. 2008 Feb 15;100(6):063001. doi: 10.1103/PhysRevLett.100.063001. Epub 2008 Feb 13.

Abstract

The electronic excitation spectra of all possible homo- and heteronuclear high-spin (quartet) trimers of K and Rb (KxRb(3-x), x=0...3) assembled on the surface of superfluid helium droplets, are measured in the spectral range from 10,600 to 17,400 cm(-1). A regular series of corresponding bands is observed, reflecting the similar electronic structure of all these trimers. For the assignment and separation of overlapping bands, we determine x directly, with mass-selected beam depletion, and indirectly with a V-type double-resonance scheme. The assignment is confirmed by high-level ab initio calculations of the electronic structure of the bare trimers. The level structure is rationalized in terms of harmonic-oscillator states of the three valence electrons in a quantum-dot-like confining potential. We predict that three should be a magic number for high-spin alkali clusters.