Requirements for CD4+ T cell memory differentiation were analyzed with adoptively transferred SMARTA T cell receptor (TCR) transgenic cells specific for alymphocytic choriomeningitis virus (LCMV) epitope. LCMV-induced effector and memory differentiation of SMARTA cells mimicked the endogenous CD4+ T cell response. In contrast, infection with a recombinant Listeria expressing the LCMV epitope, although resulting initially in massive SMARTA expansion, led to loss of effector function and rapid cell death characterized by high expression of the apoptosis regulator Bim. Defective memory differentiation was seen after stimulation of naive but not memory SMARTA cells, was independent of precursor frequency, and correlated with a lower TCR avidity compared to endogenous responders. In addition, long-lived endogenous CD4+ memory T cells skewed to a higher functional avidity over time. These results support a model in which CD4+ T cell memory differentiation and longevity depend on the strength of the TCR signal during the primary response.