Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C

Cell. 2008 Mar 21;132(6):1039-48. doi: 10.1016/j.cell.2008.01.042.


Of all cells, human erythrocytes express the highest level of the Glut1 glucose transporter. However, the regulation and function of Glut1 during erythropoiesis are not known. Here, we report that glucose transport actually decreases during human erythropoiesis despite a >3-log increase in Glut1 transcripts. In contrast, Glut1-mediated transport of L-dehydroascorbic acid (DHA), an oxidized form of ascorbic acid (AA), is dramatically enhanced. We identified stomatin, an integral erythrocyte membrane protein, as regulating the switch from glucose to DHA transport. Notably though, we found that erythrocyte Glut1 and associated DHA uptake are unique traits of humans and the few other mammals that have lost the ability to synthesize AA from glucose. Accordingly, we show that mice, a species capable of synthesizing AA, express Glut4 but not Glut1 in mature erythrocytes. Thus, erythrocyte-specific coexpression of Glut1 with stomatin constitutes a compensatory mechanism in mammals that are unable to synthesize vitamin C.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 5' Untranslated Regions
  • Animals
  • Ascorbic Acid / metabolism*
  • Biological Transport
  • Cell Line
  • Dehydroascorbic Acid / metabolism*
  • Erythrocytes / metabolism*
  • Erythropoiesis
  • Glucose Transporter Type 1 / genetics
  • Glucose Transporter Type 1 / metabolism*
  • Glucose Transporter Type 4 / metabolism
  • Humans
  • Mammals
  • Membrane Proteins / metabolism
  • Transfection


  • 5' Untranslated Regions
  • Glucose Transporter Type 1
  • Glucose Transporter Type 4
  • Membrane Proteins
  • STOM protein, human
  • Slc2a4 protein, mouse
  • Ascorbic Acid
  • Dehydroascorbic Acid