Alveolins, a New Family of Cortical Proteins That Define the Protist Infrakingdom Alveolata

Mol Biol Evol. 2008 Jun;25(6):1219-30. doi: 10.1093/molbev/msn070. Epub 2008 Mar 21.


Alveolates are a recently recognized group of unicellular eukaryotes that unites disparate protists including apicomplexan parasites (which cause malaria and toxoplasmosis), dinoflagellate algae (which cause red tides and are symbionts in many corals), and ciliates (which are microscopic predators and common rumen symbionts). Gene sequence trees provide robust support for the alveolate alliance, but beyond the common presence of membranous sacs (alveoli) subtending the plasma membrane, the group has no unifying morphological feature. We describe a family of proteins, alveolins, associated with these membranous sacs in apicomplexa, dinoflagellates, and ciliates. Alveolins contain numerous simple peptide repeats and are encoded by multigene families. We generated antibodies against a peptide motif common to all alveolins and identified a range of apparently abundant proteins in apicomplexa, dinoflagellates, and ciliates. Immunolocalization reveals that alveolins are associated exclusively with the cortical regions of apicomplexa, dinoflagellates, and ciliates where the alveolar sacs occur. Alveolins are the first molecular nexus between the unifying structures that defines this eukaryotic group. They provide an excellent opportunity to explore the exceptional compartment that was apparently the key to a remarkable diversification of unique protists that occupy a wide array of lifestyle niches.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Cell Membrane / chemistry
  • Cell Membrane / metabolism
  • Eukaryota / cytology
  • Eukaryota / genetics
  • Eukaryota / metabolism*
  • Immunohistochemistry
  • Membrane Proteins / classification*
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Molecular Sequence Data
  • Phylogeny
  • Protozoan Proteins / classification*
  • Protozoan Proteins / genetics
  • Protozoan Proteins / metabolism*


  • Membrane Proteins
  • Protozoan Proteins