Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 129 (6), 687-93

Structure and Function of Mammalian Cilia


Structure and Function of Mammalian Cilia

Peter Satir et al. Histochem Cell Biol.


In the past half century, beginning with electron microscopic studies of 9 + 2 motile and 9 + 0 primary cilia, novel insights have been obtained regarding the structure and function of mammalian cilia. All cilia can now be viewed as sensory cellular antennae that coordinate a large number of cellular signaling pathways, sometimes coupling the signaling to ciliary motility or alternatively to cell division and differentiation. This view has had unanticipated consequences for our understanding of developmental processes and human disease.


Fig. 1
Fig. 1
Classic transmission electron micrograph of mouse oviduct cilia. Cross-sections show the 9 + 2 axoneme of motile cilia (asterisk). The axoneme grows from a basal body, with a basal foot (arrowhead) pointing in the direction of the effective stroke. The transition zone between basal body and axoneme contains the ciliary necklace (arrow). (From Dirksen and Satir 1972, unpublished, with permission)
Fig. 2
Fig. 2
Primary cilia of human embryonic stem cells. Immunofluoresence microscopy using acetylated α tubulin antibody (tb) reveals the presence of primary cilia (arrows) on human embryonic stem cells. In the absence of stimulation, the hedgehog receptor ‘patched’ (Ptc) colocalizes with the acetylated α tubulin all along the ciliary membrane. Red and green channels are displaced in the images to define colocalization more clearly. Nuclei are stained with DAPI (blue). Upon stimulation, as part of the signaling cascade, Ptc leaves the cilium and the smoothened receptor (Smo) enters to activate the hedgehog signaling cascade. Asterisk marks the ciliary base. (From Kiprilov et al. , with permission, courtesy of The Journal of Cell Biology)

Similar articles

See all similar articles

Cited by 60 PubMed Central articles

See all "Cited by" articles


    1. {'text': '', 'index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/path.1652', 'is_inner': False, 'url': ''}, {'type': 'PubMed', 'value': '15495266', 'is_inner': True, 'url': ''}]}
    2. Afzelius BA (2004) Cilia-related diseases. J Pathol 204:470–477 - PubMed
    1. {'text': '', 'index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC1271007', 'is_inner': False, 'url': ''}, {'type': 'PubMed', 'value': '5105129', 'is_inner': True, 'url': ''}]}
    2. Archer FL, Wheatley DN (1971) Cilia in cell-cultured fibroblasts. II. Incidence in mitotic and post-mitotic BHK 21-C13 fibroblasts. J Anat 109:277–292 - PMC - PubMed
    1. {'text': '', 'index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0092-8674(04)00412-X', 'is_inner': False, 'url': ''}, {'type': 'PubMed', 'value': '15137945', 'is_inner': True, 'url': ''}]}
    2. Avidor-Reiss T, Maer AM, Koundakjian E, Polyanovsky A, Keil T, Subramaniam S, Zuker CS (2004) Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117:527–539 - PubMed
    1. {'text': '', 'index': 1, 'ids': [{'type': 'DOI', 'value': '10.1146/annurev.genom.7.080505.115610', 'is_inner': False, 'url': ''}, {'type': 'PubMed', 'value': '16722803', 'is_inner': True, 'url': ''}]}
    2. Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148 - PubMed
    1. {'text': '', 'index': 1, 'ids': [{'type': 'DOI', 'value': '10.1074/jbc.M300156200', 'is_inner': False, 'url': ''}, {'type': 'PubMed', 'value': '12821668', 'is_inner': True, 'url': ''}]}
    2. Baker SA, Freeman K, Luby-Phelps K, Pazour GJ, Besharse JC (2003) IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia. J Biol Chem 278:34211–34218 - PubMed

Publication types

LinkOut - more resources