Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Feb;54(1):89-94.
doi: 10.3177/jnsv.54.89.

Effect of Green Tea on Volatile Sulfur Compounds in Mouth Air

Affiliations
Free article

Effect of Green Tea on Volatile Sulfur Compounds in Mouth Air

Parth Lodhia et al. J Nutr Sci Vitaminol (Tokyo). .
Free article

Abstract

Many food products are claimed to be effective in controlling halitosis. Halitosis is caused mainly by volatile sulfur compounds (VSCs) such as H(2)S and CH(3)SH produced in the oral cavity. Oral microorganisms degrade proteinaceous substrates to cysteine and methionine, which are then converted to VSCs. Most treatments for halitosis focus on controlling the number of microorganisms in the oral cavity. Since tea polyphenols have been shown to have antimicrobial and deodorant effects, we have investigated whether green tea powder reduces VSCs in mouth air, and compared its effectiveness with that of other foods which are claimed to control halitosis. Immediately after administering the products, green tea showed the largest reduction in concentration of both H(2)S and CH(3)SH gases, especially CH(3)SH which also demonstrated a better correlation with odor strength than H(2)S; however, no reduction was observed at 1, 2 and 3 h after administration. Chewing gum, mints and parsley-seed oil product did not reduce the concentration of VSCs in mouth air at any time. Toothpaste, mints and green tea strongly inhibited VSCs production in a saliva-putrefaction system, but chewing gum and parsley-seed oil product could not inhibit saliva putrefaction. Toothpaste and green tea also demonstrated strong deodorant activities in vitro, but no significant deodorant activity of mints, chewing gum or parsley-seed oil product were observed. We concluded that green tea was very effective in reducing oral malodor temporarily because of its disinfectant and deodorant activities, whereas other foods were not effective.

Similar articles

See all similar articles

Cited by 14 articles

See all "Cited by" articles

MeSH terms

Feedback