Single-molecule force spectroscopy reveals a stepwise unfolding of Caenorhabditis elegans giant protein kinase domains
- PMID: 18390597
- PMCID: PMC2479574
- DOI: 10.1529/biophysj.108.130237
Single-molecule force spectroscopy reveals a stepwise unfolding of Caenorhabditis elegans giant protein kinase domains
Abstract
Myofibril assembly and disassembly are complex processes that regulate overall muscle mass. Titin kinase has been implicated as an initiating catalyst in signaling pathways that ultimately result in myofibril growth. In titin, the kinase domain is in an ideal position to sense mechanical strain that occurs during muscle activity. The enzyme is negatively regulated by intramolecular interactions occurring between the kinase catalytic core and autoinhibitory/regulatory region. Molecular dynamics simulations suggest that human titin kinase acts as a force sensor. However, the precise mechanism(s) resulting in the conformational changes that relieve the kinase of this autoinhibition are unknown. Here we measured the mechanical properties of the kinase domain and flanking Ig/Fn domains of the Caenorhabditis elegans titin-like proteins twitchin and TTN-1 using single-molecule atomic force microscopy. Our results show that these kinase domains have significant mechanical resistance, unfolding at forces similar to those for Ig/Fn beta-sandwich domains (30-150 pN). Further, our atomic force microscopy data is consistent with molecular dynamic simulations, which show that these kinases unfold in a stepwise fashion, first an unwinding of the autoinhibitory region, followed by a two-step unfolding of the catalytic core. These data support the hypothesis that titin kinase may function as an effective force sensor.
Figures
Similar articles
-
Identification of an N-terminal inhibitory extension as the primary mechanosensory regulator of twitchin kinase.Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13608-13. doi: 10.1073/pnas.1200697109. Epub 2012 Aug 6. Proc Natl Acad Sci U S A. 2012. PMID: 22869697 Free PMC article.
-
Mechanoenzymatics of titin kinase.Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13385-90. doi: 10.1073/pnas.0805034105. Epub 2008 Sep 2. Proc Natl Acad Sci U S A. 2008. PMID: 18765796 Free PMC article.
-
Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations.Biophys J. 2005 Feb;88(2):790-804. doi: 10.1529/biophysj.104.052423. Epub 2004 Nov 5. Biophys J. 2005. PMID: 15531631 Free PMC article.
-
Molecular origin of the hierarchical elasticity of titin: simulation, experiment, and theory.Annu Rev Biophys. 2011;40:187-203. doi: 10.1146/annurev-biophys-072110-125325. Annu Rev Biophys. 2011. PMID: 21332356 Review.
-
Pulling single molecules of titin by AFM--recent advances and physiological implications.Pflugers Arch. 2008 Apr;456(1):101-15. doi: 10.1007/s00424-007-0389-x. Epub 2007 Dec 6. Pflugers Arch. 2008. PMID: 18058125 Review.
Cited by
-
Extensive and modular intrinsically disordered segments in C. elegans TTN-1 and implications in filament binding, elasticity and oblique striation.J Mol Biol. 2010 May 21;398(5):672-89. doi: 10.1016/j.jmb.2010.03.032. Epub 2010 Mar 25. J Mol Biol. 2010. PMID: 20346955 Free PMC article.
-
Cytoskeletal protein kinases: titin and its relations in mechanosensing.Pflugers Arch. 2011 Jul;462(1):119-34. doi: 10.1007/s00424-011-0946-1. Epub 2011 Mar 18. Pflugers Arch. 2011. PMID: 21416260 Free PMC article. Review.
-
Single-molecule force spectroscopy reveals the individual mechanical unfolding pathways of a surface layer protein.J Biol Chem. 2011 Aug 5;286(31):27416-24. doi: 10.1074/jbc.M111.251322. Epub 2011 Jun 19. J Biol Chem. 2011. PMID: 21690085 Free PMC article.
-
Identification of an N-terminal inhibitory extension as the primary mechanosensory regulator of twitchin kinase.Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13608-13. doi: 10.1073/pnas.1200697109. Epub 2012 Aug 6. Proc Natl Acad Sci U S A. 2012. PMID: 22869697 Free PMC article.
-
Probing Changes in Ca2+-Induced Interaction Forces between Calmodulin and Melittin by Atomic Force Microscopy.Micromachines (Basel). 2020 Sep 30;11(10):906. doi: 10.3390/mi11100906. Micromachines (Basel). 2020. PMID: 33007824 Free PMC article.
References
-
- Lange, S., F. Xiang, A. Yakovenko, A. Vihola, P. Hackman, E. Rostkova, J. Kristensen, B. Brandmeier, G. Franzen, B. Hedberg, L. G. Gunnarsson, S. M. Hughes, S. Marchand, T. Sejersen, I. Richard, L. Edstrom, E. Ehler, B. Udd, and M. Gautel. 2005. The kinase domain of titin controls muscle gene expression and protein turnover. Science. 308:1599–1603. - PubMed
-
- Gotthardt, M., R. E. Hammer, N. Hubner, J. Monti, C. C. Witt, M. McNabb, J. A. Richardson, H. Granzier, S. Labeit, and J. Herz. 2003. Conditional expression of mutant M-line titins results in cardiomyopathy with altered sarcomere structure. J. Biol. Chem. 278:6059–6065. - PubMed
-
- Ferrara, T. M., D. B. Flaherty, and G. M. Benian. 2005. Titin/connectin-related proteins in C. elegans: a review and new findings. J. Muscle Res. Cell Motil. 26:435–447. - PubMed
-
- Benian, G. M., J. E. Kiff, N. Neckelmann, D. G. Moerman, and R. H. Waterston. 1989. Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans. Nature. 342:45–50. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
