Hexacopper(I) phosphorus(V) bromide penta(selenide/sulfide), Cu6P(Se0.7S0.3)5Br

Acta Crystallogr C. 2008 Apr;64(Pt 4):i33-4. doi: 10.1107/S0108270108005167. Epub 2008 Mar 15.

Abstract

This work illustrates possible diffusion paths for Cu(I) ions in a highly disordered structure of a superionic conductor of the argyrodite family. The Cu(6)P(Se(0.7)S(0.3))(5)Br cubic structure is built from a [P(Se(0.7)S(0.3))(5)Br] framework in which Cu(I) ions are distributed in various tetrahedral, triangular and linear sites. There are two types of disorder in the structure. The first type results from the fact that there are fewer Cu(I) ions than the number of positions available for them in the unit cell. The second type is due to the static distribution of Se and S atoms in the [P(Se(0.7)S(0.3))(5)Br] framework. The title compound is a solid solution of two efficient ionic conductors, namely Cu(6)PSe(5)Br and Cu(6)PS(5)Br, in which high ionic conductivity results from order-disorder phenomena in the copper substructure. To shed light on the distribution of Cu(I) ions in disordered Cu(6)P(Se(0.7)S(0.3))(5)Br, we refined their positions using a combination of a nonharmonic approach and a split-atom model. At room temperature, Cu(I) ions show strong anharmonic vibrations along the edge of the (Br)(4) tetrahedra. The probability density functions of the Cu(I) ions overlap and reveal possible diffusion paths.