Accommodation is a dioptric change in the power of the eye to see clearly at near. Ciliary muscle contraction causes a release in zonular tension at the lens equator, which permits the elastic capsule to mould the young lens into an accommodated form. Presbyopia, the gradual age-related loss of accommodation, occurs primarily through a gradual age-related stiffening of the lens. While there are many possible options for relieving the symptoms of presbyopia, only relatively recently has consideration been given to surgical restoration of accommodation to the presbyopic eye. To understand how this might be achieved, it is necessary to understand the accommodative anatomy, the mechanism of accommodation and the causes of presbyopia. A variety of different kinds of surgical procedures has been considered for restoring accommodation to the presbyopic eye, including surgical expansion of the sclera, using femtosecond lasers to treat the lens or with so-called accommodative intraocular lenses (IOLs). Evidence suggests that scleral expansion cannot and does not restore accommodation. Laser treatments of the lens are in their early infancy. Development and testing of accommodative IOLs are proliferating. They are designed to produce a myopic refractive change in the eye in response to ciliary muscle contraction either through a movement of an optic or through a change in surface curvature. Three general design principles are being considered. These are single optic IOLs that rely on a forward shift of the optic, dual optic IOLs that rely on an increased separation between the two optics, or IOLs that permit a change in surface curvature to produce an increase in optical power in response to ciliary muscle contraction. Several of these different IOLs are available and being used clinically, while many are still in research and development.