Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy

Cancer Lett. 2008 Jul 18;266(1):37-52. doi: 10.1016/j.canlet.2008.02.044. Epub 2008 Apr 10.


Angiogenesis is essential for tumor growth, metastasis, arteriosclerosis as well as embryonic development and wound healing. Its process is dependent on cell proliferation, migration and capillary tube formation in endothelia cells (ECs). High levels of reactive oxygen species (ROS) such as superoxide and H2O2 are observed in various cancer cells. Accumulating evidence suggests that ROS function as signaling molecules to mediate various growth-related responses including angiogenesis. ROS-dependent angiogenesis can be regulated by endogenous antioxidant enzymes such as SOD and thioredoxin. Vascular endothelial growth factor (VEGF), one of the major angiogenesis factor, is induced in growing tumors and stimulates EC proliferation and migration primarily through the VEGF receptor type2 (VEGFR2, Flk1/KDR). Major source of ROS in ECs is a NADPH oxidase which consists of Nox1, Nox2, Nox4, Nox5, p22phox, p47phox and the small G-protein Rac1. NADPH oxidase is activated by various growth factors including VEGF and angiopoietin-1 as well as hypoxia and ischemia, and ROS derived from this oxidase are involved in VEGFR2 autophosphorylation, and diverse redox signaling pathways leading to induction of transcription factors and genes involved in angiogenesis. Dietary antioxidants appear to be effective for treatment of tumor angiogenesis. The aim of this review is to provide an overview of the recent progress on role of ROS derived from NADPH oxidase and redox signaling events involved in angiogenesis. Understanding these mechanisms may provide insight into the NADPH oxidase and redox signaling components as potential therapeutic targets for tumor angiogenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Angiogenesis Inhibitors / therapeutic use*
  • Diet
  • Drug Delivery Systems
  • Humans
  • Models, Biological
  • NADPH Oxidases / metabolism*
  • Neoplasms / drug therapy
  • Neoplasms / metabolism*
  • Neovascularization, Pathologic / metabolism*
  • Reactive Oxygen Species / metabolism*
  • Signal Transduction
  • Superoxide Dismutase / metabolism
  • Vascular Endothelial Growth Factor A / metabolism*
  • Vascular Endothelial Growth Factor Receptor-2 / metabolism


  • Angiogenesis Inhibitors
  • Reactive Oxygen Species
  • Vascular Endothelial Growth Factor A
  • Superoxide Dismutase
  • NADPH Oxidases
  • Vascular Endothelial Growth Factor Receptor-2