Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties

J Am Chem Soc. 2008 May 7;130(18):5883-5. doi: 10.1021/ja801173r. Epub 2008 Apr 12.


The total structure determination of thiol-protected Au clusters has long been a major issue in cluster research. Herein, we report an unusual single crystal structure of a 25-gold-atom cluster (1.27 nm diameter, surface-to-surface distance) protected by eighteen phenylethanethiol ligands. The Au25 cluster features a centered icosahedral Au13 core capped by twelve gold atoms that are situated in six pairs around the three mutually perpendicular 2-fold axes of the icosahedron. The thiolate ligands bind to the Au25 core in an exclusive bridging mode. This highly symmetric structure is distinctly different from recent predictions of density functional theory, and it also violates the empirical golden rule "cluster of clusters", which would predict a biicosahedral structure via vertex sharing of two icosahedral M13 building blocks as previously established in various 25-atom metal clusters protected by phosphine ligands. These results point to the importance of the ligand-gold core interactions. The Au25(SR)18 clusters exhibit multiple molecular-like absorption bands, and we find the results are in good correspondence with time-dependent density functional theory calculations for the observed structure.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Benzene Derivatives / chemistry
  • Crystallography, X-Ray
  • Ethane / analogs & derivatives
  • Gold / chemistry*
  • Metal Nanoparticles / chemistry*
  • Sulfhydryl Compounds / chemistry*


  • Benzene Derivatives
  • Sulfhydryl Compounds
  • Gold
  • Ethane