A multidimensional chromatography technology for in-depth phosphoproteome analysis
- PMID: 18407956
- PMCID: PMC2493382
- DOI: 10.1074/mcp.M700468-MCP200
A multidimensional chromatography technology for in-depth phosphoproteome analysis
Abstract
Protein phosphorylation is a post-translational modification widely used to regulate cellular responses. Recent studies showed that global phosphorylation analysis could be used to study signaling pathways and to identify targets of protein kinases in cells. A key objective of global phosphorylation analysis is to obtain an in-depth mapping of low abundance protein phosphorylation in cells; this necessitates the use of suitable separation techniques because of the complexity of the phosphoproteome. Here we developed a multidimensional chromatography technology, combining IMAC, hydrophilic interaction chromatography, and reverse phase LC, for phosphopeptide purification and fractionation. Its application to the yeast Saccharomyces cerevisiae after DNA damage led to the identification of 8764 unique phosphopeptides from 2278 phosphoproteins using tandem MS. Analysis of two low abundance proteins, Rad9 and Mrc1, revealed that approximately 50% of their phosphorylation was identified via this global phosphorylation analysis. Thus, this technology is suited for in-depth phosphoproteome studies.
Figures
Similar articles
-
Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.J Proteome Res. 2014 Dec 5;13(12):6176-86. doi: 10.1021/pr500893m. Epub 2014 Nov 4. J Proteome Res. 2014. PMID: 25338131
-
Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry.Anal Bioanal Chem. 2019 Jun;411(15):3417-3424. doi: 10.1007/s00216-019-01823-0. Epub 2019 Apr 22. Anal Bioanal Chem. 2019. PMID: 31011783
-
Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins.Proteomics. 2011 Apr;11(8):1449-61. doi: 10.1002/pmic.201000649. Epub 2011 Feb 25. Proteomics. 2011. PMID: 21360674
-
Advances in the analysis of protein phosphorylation.J Proteome Res. 2008 May;7(5):1809-18. doi: 10.1021/pr7006544. Epub 2008 Mar 8. J Proteome Res. 2008. PMID: 18327898 Review.
-
Tools for analyzing the phosphoproteome and other phosphorylated biomolecules: a review.Anal Chim Acta. 2011 Oct 3;703(1):19-30. doi: 10.1016/j.aca.2011.07.012. Epub 2011 Jul 19. Anal Chim Acta. 2011. PMID: 21843671 Review.
Cited by
-
In vivo phosphorylation of Ser21 and Ser83 during nutrient-induced activation of the yeast protein kinase A (PKA) target trehalase.J Biol Chem. 2012 Dec 28;287(53):44130-42. doi: 10.1074/jbc.M112.421503. Epub 2012 Nov 15. J Biol Chem. 2012. PMID: 23155055 Free PMC article.
-
Pex30 undergoes phosphorylation and regulates peroxisome number in Saccharomyces cerevisiae.Mol Genet Genomics. 2022 Mar;297(2):573-590. doi: 10.1007/s00438-022-01872-8. Epub 2022 Feb 26. Mol Genet Genomics. 2022. PMID: 35218395
-
Cyclin-dependent kinase modulates budding yeast Rad5 stability during cell cycle.PLoS One. 2018 Sep 26;13(9):e0204680. doi: 10.1371/journal.pone.0204680. eCollection 2018. PLoS One. 2018. PMID: 30256854 Free PMC article.
-
Cdc14-dependent dephosphorylation of a kinetochore protein prior to anaphase in Saccharomyces cerevisiae.Genetics. 2010 Dec;186(4):1487-91. doi: 10.1534/genetics.110.123653. Epub 2010 Oct 5. Genetics. 2010. PMID: 20923974 Free PMC article.
-
Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes.Genes Dev. 2011 Apr 1;25(7):767-78. doi: 10.1101/gad.1998811. Genes Dev. 2011. PMID: 21460040 Free PMC article.
References
-
- Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., Hunt, D. F., and White, F. M. ( 2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305 - PubMed
-
- Li, X., Gerber, S. A., Rudner, A. D., Beausoleil, S. A., Haas, W., Villen, J., Elias, J. E., and Gygi, S. P. ( 2007) Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. J. Proteome Res. 6, 1190–1197 - PubMed
-
- Chi, A., Huttenhower, C., Geer, L. Y., Coon, J. J., Syka, J. E., Bai, D. L., Shabanowitz, J., Burke, D. J., Troyanskaya, O. G., and Hunt, D. F. ( 2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 104, 2193–2198 - PMC - PubMed
-
- Bodenmiller, B., Malmstrom, J., Gerrits, B., Campbell, D., Lam, H., Schmidt, A., Rinner, O., Mueller, L. N., Shannon, P. T., Pedrioli, P. G., Panse, C., Lee, H. K., Schlapbach, R., and Aebersold, R. ( 2007) PhosphoPep—a phosphoproteome resource for systems biology research in Drosophila Kc167 cells. Mol. Syst. Biol. 3, 139. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
