Defense-inducing volatiles: in search of the active motif
- PMID: 18408973
- PMCID: PMC2373414
- DOI: 10.1007/s10886-008-9464-9
Defense-inducing volatiles: in search of the active motif
Abstract
Herbivore-induced volatile organic compounds (VOCs) are widely appreciated as an indirect defense mechanism since carnivorous arthropods use VOCs as cues for host localization and then attack herbivores. Another function of VOCs is plant-plant signaling. That VOCs elicit defensive responses in neighboring plants has been reported from various species, and different compounds have been found to be active. In order to search for a structural motif that characterizes active VOCs, we used lima bean (Phaseolus lunatus), which responds to VOCs released from damaged plants with an increased secretion of extrafloral nectar (EFN). We exposed lima bean to (Z)-3-hexenyl acetate, a substance naturally released from damaged lima bean and known to induce EFN secretion, and to several structurally related compounds. (E)-3-hexenyl acetate, (E)-2-hexenyl acetate, 5-hexenyl acetate, (Z)-3-hexenylisovalerate, and (Z)-3-hexenylbutyrate all elicited significant increases in EFN secretion, demonstrating that neither the (Z)-configuration nor the position of the double-bond nor the size of the acid moiety are critical for the EFN-inducing effect. Our result is not consistent with previous concepts that postulate reactive electrophile species (Michael-acceptor-systems) for defense-induction in Arabidopsis. Instead, we postulate that physicochemical processes, including interactions with odorant binding proteins and resulting in changes in transmembrane potentials, can underlie VOCs-mediated signaling processes.
Figures
Similar articles
-
The defensive role of volatile emission and extrafloral nectar secretion for lima bean in nature.J Chem Ecol. 2008 Jan;34(1):1-13. doi: 10.1007/s10886-007-9404-0. Epub 2007 Dec 12. J Chem Ecol. 2008. PMID: 18071821 Free PMC article.
-
Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature.Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5467-72. doi: 10.1073/pnas.0610266104. Epub 2007 Mar 7. Proc Natl Acad Sci U S A. 2007. PMID: 17360371 Free PMC article.
-
Do plants use airborne cues to recognize herbivores on their neighbours?Exp Appl Acarol. 2013 Mar;59(3):263-73. doi: 10.1007/s10493-012-9616-z. Epub 2012 Sep 26. Exp Appl Acarol. 2013. PMID: 23011105
-
Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs.Annu Rev Entomol. 2015 Jan 7;60:213-32. doi: 10.1146/annurev-ento-010814-020753. Annu Rev Entomol. 2015. PMID: 25564741 Review.
-
Language of plants: Where is the word?J Integr Plant Biol. 2016 Apr;58(4):343-9. doi: 10.1111/jipb.12447. Epub 2016 Feb 22. J Integr Plant Biol. 2016. PMID: 26563972 Review.
Cited by
-
Differential metabolisms of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirements.PLoS One. 2012;7(4):e36433. doi: 10.1371/journal.pone.0036433. Epub 2012 Apr 30. PLoS One. 2012. PMID: 22558466 Free PMC article.
-
Root secretion of defense-related proteins is development-dependent and correlated with flowering time.J Biol Chem. 2010 Oct 1;285(40):30654-65. doi: 10.1074/jbc.M110.119040. Epub 2010 Aug 3. J Biol Chem. 2010. PMID: 20682788 Free PMC article.
-
Volatile-mediated plant-plant interactions: volatile organic compounds as modulators of receiver plant defence, growth, and reproduction.J Exp Bot. 2022 Jan 13;73(2):511-528. doi: 10.1093/jxb/erab487. J Exp Bot. 2022. PMID: 34791168 Free PMC article. Review.
-
Airborne induction and priming of plant defenses against a bacterial pathogen.Plant Physiol. 2009 Dec;151(4):2152-61. doi: 10.1104/pp.109.144782. Epub 2009 Oct 7. Plant Physiol. 2009. PMID: 19812184 Free PMC article.
-
The composite effect of transgenic plant volatiles for acquired immunity to herbivory caused by inter-plant communications.PLoS One. 2011;6(10):e24594. doi: 10.1371/journal.pone.0024594. Epub 2011 Oct 12. PLoS One. 2011. PMID: 22022359 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1046/j.1365-313X.2003.01718.x', 'is_inner': False, 'url': 'https://doi.org/10.1046/j.1365-313x.2003.01718.x'}, {'type': 'PubMed', 'value': '12694595', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12694595/'}]}
- Almeras, E., Stolz, S., Vollenweider, S., Reymond, P., Mene-saffrane, L., and Farmer, E. E. 2003. Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J 34:202–216. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/35020072', 'is_inner': False, 'url': 'https://doi.org/10.1038/35020072'}, {'type': 'PubMed', 'value': '10952311', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10952311/'}]}
- Arimura, G.-I., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W., and Takabayashi, J. 2000. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1126/science.1118446', 'is_inner': False, 'url': 'https://doi.org/10.1126/science.1118446'}, {'type': 'PubMed', 'value': '16469918', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16469918/'}]}
- Baldwin, I. T., Halitschke, R., Paschold, A., Von dahl, C. C., and Preston, C. A. 2006. Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science 311:812–815. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1074/jbc.M100713200', 'is_inner': False, 'url': 'https://doi.org/10.1074/jbc.m100713200'}, {'type': 'PubMed', 'value': '11274212', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11274212/'}]}
- Campanacci, V., Krieger, J., Bette, S., Sturgis, J. N., Lartigue, A., Cambillau, C., Breer, H., and Tegoni, M. 2001. Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. J. Biol. Chem. 276:20078–20084. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1073/pnas.0308037100', 'is_inner': False, 'url': 'https://doi.org/10.1073/pnas.0308037100'}, {'type': 'PMC', 'value': 'PMC341853', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC341853/'}, {'type': 'PubMed', 'value': '14749516', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/14749516/'}]}
- Engelberth, J., Alborn, H. T., Schmelz, E. A., and Tumlinson, J. H. 2004. Airborne signals prime plants against insect herbivore attack. Proc. Natl. Acad. Sci. USA 101:1781–1785. - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
