Stromal gene expression predicts clinical outcome in breast cancer

Nat Med. 2008 May;14(5):518-27. doi: 10.1038/nm1764. Epub 2008 Apr 27.

Abstract

Although it is increasingly evident that cancer is influenced by signals emanating from tumor stroma, little is known regarding how changes in stromal gene expression affect epithelial tumor progression. We used laser capture microdissection to compare gene expression profiles of tumor stroma from 53 primary breast tumors and derived signatures strongly associated with clinical outcome. We present a new stroma-derived prognostic predictor (SDPP) that stratifies disease outcome independently of standard clinical prognostic factors and published expression-based predictors. The SDPP predicts outcome in several published whole tumor-derived expression data sets, identifies poor-outcome individuals from multiple clinical subtypes, including lymph node-negative tumors, and shows increased accuracy with respect to previously published predictors, especially for HER2-positive tumors. Prognostic power increases substantially when the predictor is combined with existing outcome predictors. Genes represented in the SDPP reveal the strong prognostic capacity of differential immune responses as well as angiogenic and hypoxic responses, highlighting the importance of stromal biology in tumor progression.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism*
  • Female
  • Gene Expression Profiling*
  • Gene Expression Regulation, Neoplastic*
  • Genetic Markers / genetics
  • Humans
  • Lasers
  • Microdissection / methods
  • Oligonucleotide Array Sequence Analysis
  • Prognosis
  • Regression Analysis
  • Stromal Cells / metabolism*

Substances

  • Genetic Markers