Wide band resonant ultrasound spectroscopy of spheroidal modes for high accuracy estimation of Poisson coefficient of balls

Rev Sci Instrum. 2008 Apr;79(4):044901. doi: 10.1063/1.2908169.

Abstract

An original inversion method specifically adapted to the estimation of Poisson coefficient of balls by using their resonance spectra is described. From the study of their elastic vibrations, it is possible to accurately characterize the balls. The proposed methodology can create both spheroidal modes in the balls and detect such vibrations over a large frequency range. Experimentally, by using both an ultrasonic probe for the emission (piezoelectric transducer) and a heterodyne optic probe for the reception (interferometer), it was possible to take spectroscopic measurements of spheroidal vibrations over a large frequency range (100 kHz-45 MHz) in a continuous regime. This method, which uses ratios between wave resonance frequencies, allows the Poisson coefficient to be determined independently of Young's modulus and the ball's radius and density. This has the advantage of providing highly accurate estimations of Poisson coefficient (+/-4.3 x 10(-4)) over a wide frequency range.