What can we learn from resource pulses?

Ecology. 2008 Mar;89(3):621-34. doi: 10.1890/07-0175.1.


An increasing number of studies in a wide range of natural systems have investigated how pulses of resource availability influence ecological processes at individual, population, and community levels. Taken together, these studies suggest that some common processes may underlie pulsed resource dynamics in a wide diversity of systems. Developing a common framework of terms and concepts for the study of resource pulses may facilitate greater synthesis among these apparently disparate systems. Here, we propose a general definition of the resource pulse concept, outline some common patterns in the causes and consequences of resource pulses, and suggest a few key questions for future investigations. We define resource pulses as episodes of increased resource availability in space and time that combine low frequency (rarity), large magnitude (intensity), and short duration (brevity), and emphasize the importance of considering resource pulses at spatial and temporal scales relevant to specific resource-onsumer interactions. Although resource pulses are uncommon events for consumers in specific systems, our review of the existing literature suggests that pulsed resource dynamics are actually widespread phenomena in nature. Resource pulses often result from climatic and environmental factors, processes of spatiotemporal accumulation and release, outbreak population dynamics, or a combination of these factors. These events can affect life history traits and behavior at the level of individual consumers, numerical responses at the population level, and indirect effects at the community level. Consumers show strategies for utilizing ephemeral resources opportunistically, reducing resource variability by averaging over larger spatial scales, and tolerating extended interpulse periods of reduced resource availability. Resource pulses can also create persistent effects in communities through several mechanisms. We suggest that the study of resource pulses provides opportunities to understand the dynamics of many specific systems, and may also contribute to broader ecological questions at individual, population, and community levels.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Physiological
  • Biodiversity*
  • Ecosystem*
  • Food Chain*
  • Models, Biological*
  • Population Density
  • Population Dynamics
  • Population Growth
  • Rain
  • Species Specificity
  • Time Factors