Carbon nanotube T junctions: formation and properties

J Nanosci Nanotechnol. 2008 Jan;8(1):88-98. doi: 10.1166/jnn.2008.n09.

Abstract

The formation of carbon nanotube T junctions (CNTJs) and their transport properties are reviewed. The CNTJs were formed by coupling chemically functionalized nanotubes with linker molecules. Both end-to-side and end-to-end intermolecular junctions can be assembled by reacting chloride terminated nanotubes with aliphatic diamines. The functionalized nanotube mats were characterized by Raman spectroscopy and X-ray photoelectron spectroscopy. The incorporation of functional groups into nanotubes is indicated by the pronounced shift of tangential vibration modes in Raman spectra and of carbon is binding energy in X-ray photoelectron spectra. For transport measurements the functionalized nanotubes were adsorbed on Si substrates, and subsequent electrodes were painted on top of the selected T junctions by lithography and lift-off techniques. The bar of the "T" is used as the transistor channel and the stem of the "T" is used as the gate. In this configuration, the active area is confined to a few nanometers in all three dimensions.