Ionization-specific prediction of blood-brain permeability
- PMID: 18481317
- DOI: 10.1002/jps.21405
Ionization-specific prediction of blood-brain permeability
Abstract
This study presents a mechanistic QSAR analysis of passive blood-brain barrier permeability of drugs and drug-like compounds in rats and mice. The experimental data represented in vivo log PS (permeability-surface area product) from in situ perfusion, brain uptake index, and intravenous administration studies. A data set of 280 log PS values was compiled. A subset of 178 compounds was assumed to be driven by passive transport that is free of plasma protein binding and carrier-mediated effects. This subset was described in terms of nonlinear lipophilicity and ionization dependences, that account for multiple kinetic and thermodynamic effects: (i) drug's kinetic diffusion, (ii) ion-specific partitioning between plasma and brain capillary endothelial cell membranes, and (iii) hydrophobic entrapment in phospholipid bilayer. The obtained QSAR model provides both good statistical significance (RMSE < 0.5) and simple physicochemical interpretations (log P and pKa), thus providing a clear route towards property-based design of new CNS drugs.
(c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
Similar articles
-
Ionization-specific analysis of human intestinal absorption.J Pharm Sci. 2009 Nov;98(11):4039-54. doi: 10.1002/jps.21730. J Pharm Sci. 2009. PMID: 19360843
-
Ionization-specific QSAR models of blood-brain penetration of drugs.Chem Biodivers. 2009 Nov;6(11):2050-4. doi: 10.1002/cbdv.200900079. Chem Biodivers. 2009. PMID: 19937840
-
QSAR analysis of blood-brain distribution: the influence of plasma and brain tissue binding.J Pharm Sci. 2011 Jun;100(6):2147-60. doi: 10.1002/jps.22442. Epub 2011 Jan 26. J Pharm Sci. 2011. PMID: 21271563
-
[Computer modeling of blood brain barrier permeability of physiologically active compounds].Biomed Khim. 2014 Mar-Apr;60(2):161-81. doi: 10.18097/pbmc20146002161. Biomed Khim. 2014. PMID: 24837308 Review. Russian.
-
Blood Brain Barrier Permeability Prediction Using Machine Learning Techniques: An Update.Curr Pharm Biotechnol. 2019;20(14):1163-1171. doi: 10.2174/1389201020666190821145346. Curr Pharm Biotechnol. 2019. PMID: 31433750 Review.
Cited by
-
Chromatographic Data in Statistical Analysis of BBB Permeability Indices.Membranes (Basel). 2023 Jun 26;13(7):623. doi: 10.3390/membranes13070623. Membranes (Basel). 2023. PMID: 37504989 Free PMC article.
-
Development of QSAR models to predict blood-brain barrier permeability.Front Pharmacol. 2022 Oct 20;13:1040838. doi: 10.3389/fphar.2022.1040838. eCollection 2022. Front Pharmacol. 2022. PMID: 36339562 Free PMC article.
-
Prediction Models for Brain Distribution of Drugs Based on Biomimetic Chromatographic Data.Molecules. 2022 Jun 7;27(12):3668. doi: 10.3390/molecules27123668. Molecules. 2022. PMID: 35744794 Free PMC article.
-
Correlation between molecular acidity (pKa) and vibrational spectroscopy.J Mol Model. 2019 Jan 30;25(2):48. doi: 10.1007/s00894-019-3928-4. J Mol Model. 2019. PMID: 30701357
-
Improved Prediction of Blood-Brain Barrier Permeability Through Machine Learning with Combined Use of Molecular Property-Based Descriptors and Fingerprints.AAPS J. 2018 Mar 21;20(3):54. doi: 10.1208/s12248-018-0215-8. AAPS J. 2018. PMID: 29564576 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
