Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991 Feb;5(2):178-86.
doi: 10.1096/fasebj.5.2.1848518.

Structure-activity relationships for transmembrane signaling: the receptor's turn

Affiliations
Review

Structure-activity relationships for transmembrane signaling: the receptor's turn

M D Hollenberg. FASEB J. 1991 Feb.

Abstract

The cloning, sequencing, and functional expression in host cells of a variety of receptors has led to a focus on the structural determinants of pharmacologic receptors involved in the complex processes of ligand binding and cell activation. The three basic mechanisms of receptor-mediated transmembrane signaling (ligand-regulated ion flux; ligand-regulated receptor-enzymes; ligand-regulated receptor-G protein activation) can now be placed in the structural context of at least three receptor superfamilies: 1) ligand-regulated oligomeric ion channels, 2) ligand-regulated tyrosine kinases, and 3) G protein-linked rhodopsin-related receptors. For each of these receptor superfamilies, structure-activity studies that use 1) site-directed mutagenesis, 2) cassette switching to form receptor chimeras, and 3) sequence-specific antireceptor antibodies are beginning to delineate the domains responsible for specific receptor functions. Analyses of such receptor domains related to: 1) ligand binding, 2) membrane insertion, 3) catalytic activity (in the case of receptor-enzymes), 4) internalization and interaction with other membrane constituents, 5) substrate or G protein binding, and 6) regulatory sites of receptor phosphorylation are discussed, using as principal examples the nicotinic receptor for acetylcholine, the epidermal growth factor-urogastrone receptor, and the beta-adrenergic receptor. These studies illustrate that in terms of structure-activity studies, which have traditionally emphasized the ligand, it is now the receptor's turn for intense attention.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources