Anisotropic wetting behavior arising from superhydrophobic surfaces: parallel grooved structure

J Phys Chem B. 2008 Jun 19;112(24):7234-43. doi: 10.1021/jp712019y. Epub 2008 May 21.

Abstract

It has been found experimentally that superhydrophobic surfaces exhibit strong anisotropic wetting behavior. This study reports a simple but robust thermodynamic methodology to investigate the anisotropic superhydrophobic behavior for parallel grooved surfaces. Free energy and its barrier and the corresponding contact angle and its hysteresis for various orientations of the groove structure are calculated based on the proposed thermodynamic model. It is revealed that the strong anisotropy of equilibrium contact angle (ECA) and contact angle hysteresis (CAH) is shown in the noncomposite state but almost isotropic wetting properties are exhibited in the composite state. Furthermore, for the noncomposite state, decreasing groove width and spacing or increasing groove depth can amplify the anisotropy for ECA. Meanwhile, decreasing groove width and increasing depth can amplify the anisotropy for CAH, while varying groove spacing can barely influence CAH. For the composite state, however, the surface geometry hardly leads to the anisotropic behavior. In addition, using a fitting approximation, a simple quantitative correlation between wettability and orientation can be established well, which is consistent with the numerical calculations.