A voxel-based morphometry study of grey matter loss in MS patients with different clinical phenotypes

Neuroimage. 2008 Aug 1;42(1):315-22. doi: 10.1016/j.neuroimage.2008.04.173. Epub 2008 Apr 20.

Abstract

To assess regional grey matter (GM) changes in a large cohort of multiple sclerosis (MS) patients with different clinical phenotypes, using voxel-based morphometry (VBM) and their correlation with the extent of global and regional T2 lesion volumes (LV), we acquired conventional MRI scans from 71 MS patients with different clinical phenotypes (26 with relapsing-remitting [RR] MS, 27 with secondary progressive [SP] MS and 18 with primary progressive [PP] MS), 28 patients with a clinically isolated syndrome (CIS) suggestive of MS, and 21 controls. No GM loss was found in CIS patients. Compared to CIS patients, those with RRMS had a significant GM loss in the right pre and postcentral gyri. Compared to RRMS, SPMS patients had a significant GM loss in several regions of the fronto-parieto-temporo-occipital lobes, the cerebellum and superior and inferior colliculus, bilaterally, and deep GM structures. Compared to PPMS, SPMS patients had a significant GM loss in the postcentral gyrus, the cuneus, the middle occipital gyrus, the thalamus, the cerebellum, and the superior and inferior colliculus. In all MS groups, regional GM loss was strongly/moderately correlated with brain T2 LV. In SPMS and PPMS patients, a correlation was found between cortical regional GM loss and T2 LV of the corresponding or adjacent lobes. In MS patients, GM volume loss follows different patterns of regional distribution according to the clinical phenotype of the disease, is likely secondary to the presence and topography of focal WM inflammatory-demyelinating lesions, and is more evident in the progressive forms of the disease.

MeSH terms

  • Adult
  • Aged
  • Atrophy / pathology
  • Brain / pathology*
  • Female
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Multiple Sclerosis / pathology*
  • Neurons / pathology*
  • Young Adult