Palladium-catalyzed formation of highly substituted naphthalenes from arene and alkyne hydrocarbons

Chemistry. 2008;14(22):6697-703. doi: 10.1002/chem.200800538.

Abstract

Several highly substituted naphthalenes 3 have been synthesized in a one-pot reaction by treatment of arenes 1 with alkynes 2 in the presence of palladium acetate and silver acetate. In this Pd-catalyzed protocol, an arene provides a benzo source for the construction of a naphthalene core through twofold aryl C-H bond activation. Reaction of triphenylphosphine with diphenylethyne (2 a) under the catalysis of Pd(IV) complexes produced 1,2,3,4-tetraphenylnaphthalene (3 ba) in 62 % yield. Here, triphenylphosphine undergoes one aryl C-P bond cleavage and one aryl C-H bond activation to serve as a benzo moiety. Crystal structures of cycloadducts 3 ea, 3 ga, and 3 ac have been analyzed. The twisted naphthalenes arise not only from the overcrowded substituents but also from the contribution of the CH(3)-pi interaction.