Ethanol production from starch by a coimmobilized mixed culture system of Aspergillus awamori and Zymomonas mobilis

Biotechnol Bioeng. 1986 Dec;28(12):1761-8. doi: 10.1002/bit.260281202.

Abstract

The production of ethanol from starch by a coimmobilized mixed culture system of aerobic and anaerobic microorganisms in Ca-alginate gel beads was investigated. The mold Aspergillus awamori was used as an aerobic amylolytic microorganism and an anaerobic bacterium, Zymomonas mobilis, as an ethanol producer. By controlling the mixing ratio of the microorganisms in the inoculum size, a desirable coimmobilized mixed culture system, in which the aerobic mycelia grew on and near the oxygen-rich surface of the gel beads while the anaerobic bacterial cells mainly grew in the oxygen-deficient central part of the gel beads, was naturally established under the aerobic culture conditions, and ethanol could be directly produced from starch by the system. The ethanol productivity by the system in flask culture was particularly affected by the shear stress (dependent on the shaking speed) which controlled the mycelial growth on the surface of the gel beads. Under optimum culture conditions in the flask culture, the glucose produced was instantly consumed, and was not observed in the culture broth; the final concentration of ethanol produced from 100 g/L starch was 25 g/L and the yield coefficient for ethanol, Y(pls), was 0.38. The ethanol productivity by the coimmobilized mixed culture system was compared with those by other various culture systems and the advantages of the system were clarified.