Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Sep;9(5):392-403.
doi: 10.1093/bib/bbn027. Epub 2008 Jun 18.

Penalized Feature Selection and Classification in Bioinformatics

Affiliations
Free PMC article
Review

Penalized Feature Selection and Classification in Bioinformatics

Shuangge Ma et al. Brief Bioinform. .
Free PMC article

Abstract

In bioinformatics studies, supervised classification with high-dimensional input variables is frequently encountered. Examples routinely arise in genomic, epigenetic and proteomic studies. Feature selection can be employed along with classifier construction to avoid over-fitting, to generate more reliable classifier and to provide more insights into the underlying causal relationships. In this article, we provide a review of several recently developed penalized feature selection and classification techniques--which belong to the family of embedded feature selection methods--for bioinformatics studies with high-dimensional input. Classification objective functions, penalty functions and computational algorithms are discussed. Our goal is to make interested researchers aware of these feature selection and classification methods that are applicable to high-dimensional bioinformatics data.

Figures

Figure 1:
Figure 1:
A taxonomy of feature selection and dimension reduction.

Similar articles

See all similar articles

Cited by 42 articles

See all "Cited by" articles

Publication types

Feedback