Pseudogenes have classically been considered inactive sequences evolving under neutrality. In recent years, however, a growing body of evidence is favoring the appearance of hypotheses attributing a functional role to pseudogenes. One of these hypotheses is that the silencing of a gene could produce a loss of function that could have been favored by natural selection. Here, we analyzed the pace of pseudogenization of arpAT, an L-DOPA transporter related to the neurotransmitter function of this amino acid in the brain. While active in rodent, dog, and chicken, arpAT has been silenced during primate evolution. Given the high number of inactivating mutations described in humans, it is possible that there have been selective pressures favoring this silencing. Through analysis of orthologous sequences in several primate species, we show that the silencing of arpAT occurred approximately 77 million to 90 million years ago, and that the observed mutation pattern is likely a consequence of its antiquity.