Mechanism of Ca2+-influx and Ca2+/calmodulin-dependent protein kinase IV activity during in utero hypoxia in cerebral cortical neuronal nuclei of the guinea pig fetus at term

Neurosci Lett. 2008 Aug 8;440(3):227-31. doi: 10.1016/j.neulet.2008.05.095. Epub 2008 Jun 18.

Abstract

Previously we showed that following hypoxia there is an increase in nuclear Ca(2+)-influx and Ca(2+)/calmodulin-dependent protein kinase IV activity (CaMK IV) in the cerebral cortex of term guinea pig fetus. The present study tests the hypothesis that clonidine administration will prevent hypoxia-induced increased neuronal nuclear Ca(2+)-influx and increased CaMK IV activity, by blocking high-affinity Ca(2+)-ATPase. Studies were conducted in 18 pregnant guinea pigs at term, normoxia (Nx, n=6), hypoxia (Hx, n=6) and clonidine with Hx (Hx+Clo, n=6). The pregnant guinea pig was exposed to a decreased FiO(2) of 0.07 for 60 min. Clonidine, an imidazoline inhibitor of high-affinity Ca(2+)-ATPase, was administered 12.5 microg/kg IP 30 min prior to hypoxia. Hypoxia was determined biochemically by ATP and phosphocreatine (PCr) levels. Nuclei were isolated and ATP-dependent (45)Ca(2+)-influx was determined. CaMK IV activity was determined by (33)P-incorporation into syntide 2 for 2 min at 37 degrees C in a medium containing 50mM HEPES (pH 7.5), 2mM DTT, 40muM syntide 2, 0.2mM (33)P-ATP, 10mM magnesium acetate, 5 microM PKI 5-24, 2 microM PKC 19-36 inhibitor peptides, 1 microM microcystine LR, 200 microM sodium orthovanadate and either 1mM EGTA (for CaMK IV-independent activity) or 0.8mM CaCl(2) and 1mM calmodulin (for total activity). ATP (mumoles/gbrain) values were significantly different in the Nx (4.62+/-0.2), Hx (1.65+/-0.2, p<0.05 vs. Nx), and Hx+Clo (1.92+/-0.6, p<0.05 vs. Nx). PCr (mumoles/g brain) values in the Nx (3.9+/-0.1), Hx (1.10+/-0.3, p<0.05 vs. Nx), and Hx+Clo (1.14+/-0.3, p<0.05 vs. Nx). There was a significant difference between nuclear Ca(2+)-influx (pmoles/mg protein/min) in Nx (3.98+/-0.4), Hx (10.38+/-0.7, p<0.05 vs. Nx), and Hx+Clo (7.35+/-0.9, p<0.05 vs. Nx, p<0.05 vs. Hx), and CaM KIV (pmoles/mg protein/min) in Nx (1314.00+/-195.4), Hx (2315.14+/-148.5, p<0.05 vs. Nx), and Hx+Clo (1686.75+/-154.3, p<0.05 vs. Nx, p<0.05 vs. Hx). We conclude that the mechanism of hypoxia-induced increased nuclear Ca(2+)-influx is mediated by high-affinity Ca(2+)-ATPase and that CaMK IV activity is nuclear Ca(2+)-influx-dependent. We speculate that hypoxia-induced alteration of high-affinity Ca(2+)-ATPase is a key step that triggers nuclear Ca(2+)-influx, leading to CREB protein-mediated increased expression of apoptotic proteins and hypoxic neuronal death.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Calcium / metabolism*
  • Calcium-Calmodulin-Dependent Protein Kinase Type 4 / metabolism*
  • Cell Nucleus / drug effects
  • Cell Nucleus / metabolism*
  • Cerebral Cortex / pathology*
  • Creatine / metabolism
  • Embryo, Mammalian
  • Enzyme Inhibitors / pharmacology
  • Female
  • Fetal Hypoxia / metabolism
  • Fetal Hypoxia / pathology*
  • Guinea Pigs
  • Isotopes / metabolism
  • Neurons / drug effects
  • Neurons / pathology*
  • Pregnancy

Substances

  • Enzyme Inhibitors
  • Isotopes
  • Adenosine Triphosphate
  • Calcium-Calmodulin-Dependent Protein Kinase Type 4
  • Creatine
  • Calcium