A mathematical model for prediction of plasmid copy number and genetic stability in Escherichia coli

Biotechnol Bioeng. 1987 Aug 20;30(3):389-97. doi: 10.1002/bit.260300310.

Abstract

The design of bioreactors for genetically modified bacterial cultures would benefit from predictive models. Of particular importance is the interaction of the external environment, cell physiology, and control of plasmid copy number. We have recently developed a model based on the molecular mechanisms for control of replication of Co1E1 type plasmids. The inclusion of the plasmid model into a single-cell E. coli model allows the explicit prediction of the interaction of cell physiology and plasmid-encoded functions. The model predictions of the copy number of plasmids with the Co1E1 origin of replication carrying a variety of regulatory mutations is very close to that observed experimentally.All of the model parameters for plasmid replication control can be obtained independently and no adjustable parameters are needed for the plasmid model. In this article we discuss the model's use in predicting the effect of operating conditions on production of a protein from a plasmid encoded gene and the stability of the recombinant cells in a continuous culture.